ANALYTICAL GEOMETRY
OF

THREE DIMENSIONS

BY
D. M. Y. SOMMERVILLE &
' M. A, D.53c., F.N.Z.InsT. '<>§
PEOFLSSOR OF PURE AWD APPLIED MATHEMATILS \ \
VICTORIA UNIVERSITY COLLEGE % O
* _ WELLINGTON, M.Z. SN
. "Zi\x
W
N
<\2>
S
\ o
R\ % :
5‘\\\
=\
QO
A
& v 4
> 2
) (?C) 13+$
0,2}.)
N
O
N
. P NS
Q\./ ’
CAMBRIDGE

AT THE UNIVERSITY PRESS

1947



Printed in Great Britain at the University Press, Cambridge

(Brooke Crutchiey, University Printer) A\
and published by the Cambridge University Press A\

Cambridge, and Bentley House, London ‘\
Agents for U.S.A., Canada, and India: Macmillan O

\-
R

VA
A
>
4
&
1,*;;;; gdfz@g\%g; '
K\

/\u 1947
<‘\ 94

N
g\
{}Q}

\0((_}

N\
Q)

o
QY



CONTENTS

Preface page xv

Chap. 1. Cartesian coordinate-system

11, Cartesian coordinates; 1-11. Convention of signs, right-
handed system

1-2. Radius-vector, direction-angles; 1-21. Direction-cosines; 1-22.
Radius-vector in terms of coordinates; 1-23. Identity con-
necting the direction-cosines

1-3. Change of origin

1-4. Distance between two points :

1-&.

Angle between two lines, actual direction-cosines; 1-51, Nu,[ﬁ'-:'«,

bers proportional tothe direction-cosines; 1:52. Exprossion
for sin® # &4

1-6. Perpendicularity and parallelism; 1-61. Condition"f‘o}' per-
pendicularity ; 1-62, Conditions for parallelista 4

1-7. Position-ratio of 2 point w.r.t. two base-points; 1*Th Another
set of section-formulae; 1-72. Mean poin;'o:fstwo points;
1-78. Mean point of three points &

1:8. General cartesian coordinates ; 1-81. Radigst}t:ctor in terms of
coordinates; 1:82. Identity connegbing’ direction-ratios;
1-83. Distance between two points)f'84. Angle between
two lines ™

1+9. Examples

o

Chap. I1. The straight ligesand plane

21, Degrees of freedom; 21, Equations of & straight line; 2-111,
Freedom-equatiqns\zvliz Standard form; 2-113. Another
form of free sefuations; 212. Equation of a plane:
2181, Freed equations; 2122. Determinant form:
2-128. Equasion of first degree represcnts a plane; 2-124,
Orientatian.of a plane, norral equation of plane; 2-125.
Interdeptcdquation: 218, Intersection of two planes;
214, Note on vectors

2-2. Angled /"

2-31. Tnt€rsction of a straight line and a plane; 2.83. Points, lines

Qsm'c] plane at infinity; £33. Homogeneous cartesian co-

..s'\ordinates; 234, Freedom-equations of a line in homo-

3 7 gencous coordinates; 2341, Matrices; 2:35, Equation of a

N\ planc in homopgeneous coordinates; 2-851. Freedom-

a\ equations of a plane in homogeneous coordinates: 238,
\ ; Point, line and plane at infinity represented analytically

241, Intersection of three planes; 242, Pencil of planes; 2-43.
Condition that three lines through the origin should lie in
one plane; 2:44. Intersection of two straicht lines

2-3. Numberof data which determinea point,aplanc anda straight
line; 2-51, Coordinates of a plane; 2-511. Notation; 2-52.
Coordinates of a line; 2521. Identical relation; 2-522.
Line determined by a set of coordinates satisfying the
identical relation ; 8-528. Relations between the two sets of
line-coordinates; 2-524. Condition that two lines should
intersect

'\
N\,

b 4

A

4t b

.

11
I3

21

24



vi ' CONTENTS

#6. Imaginary elements : . . pageso
2.71. Distance from a point to a plane; 272. Distance of a point

from a straight line; 2-73. Shortest distance between two

straight lines; 2-731. Moment of two lines S 31
2-6. Volume of tetrahedron; 281, in terms of coterminous edges;

2:82. in terms of six edges ) 24
9.0, Transformation of coordinates; 281, Euler’s equations; 2:92. :

Modulus of transformation; 285, Examples 37

Chap. 1I1. General homogeneous or projective
coordinates ~

31, Projective georiietry; 3+11, Primitive geometrical elements and
forms . . 28N 46
. 3:3. One-to-one correspondence; 821, Cross-ratio, metrical defix\ ™
nition; 3-22. Coordinate of a point on a line .\
%8. Cross-ratio of four parameters; 5-81. The six cross-raties.of
four numbers: 8811, Harmonic and equianharmofiic Sets ;
8-32, Representation of a pair by a quadraticfeduation;
3821, Condition’ that two pairs should be\h&#mmonic;
3.322. In a harmonic set at least one of the%pairs must be
real; 8-828, Cross-ratio of two pairs; 332k Condition that
cross-ratio should be real; 3:325. and positive 44
241, Geometrical cross-ratio; 3-42. Harmonicget; 3-48, Projective
ranges; 844, Fundamental theorfm™of projective geo-
metry; 3:45. Cross-ratio propesin gt conic 53
8-5. Homography, double-points; 8-64, Involution; §52. Involu-
tion determined by two paifs of elements; 3-521. Involu-
tion determined by a quadringle 55
8:6. Geometrical cross-ratio as @mgimber: 3-61, Identification with
the cross-ratio of the Parameters; $-63. ITarmonic set;
3-63. Rational net;"8:64. Projective coordinates in two di-
mensions; 8-65/The unit-point; 366, Projective coordi-

47

nates in threeddimensions; 8-67. in »n dimensions 58
3-71. Cross-ratios of different geometrical forms; 3-72. Polar plane
of a poi AN tetrabhedron 63

3:81, Transitign from projective to metrical geometry; 882, Dis-
tance 1 metrical peometry of one dimension; 383, Dis-
tagle™n two dimensions; 884, The Absolute; 385.
-Métrical coordinates referred to a tetrahedron; 3-851.
/x(}uadriplanar coordinates; $859. Volume-coordinates;
(3883, Barycentric coordinates; 388, Plane at infinity;
3-881. Cartesian coordinates.
{®91. Analytical representation of a homography ; 8-92. Determina-
o tion of an involution by two pairs; 8-921, If both pairs are .
A * - real, the involution is ¢lliptic or hyperbolic according as
m~J the cross-ratio is negative or positive; 8-922. If one pair is
\ ) ) imaginary, the involution is hyperbolic: 393, Two in-
. volutions on the same line have a unique commeon pair 7o
3-95. Examples 2T

Chap. IV, The sphere

4.1, Equation in terms of centre and radius; 411, Centre and
radius, virtual sphere and point-sphere; 442, Sphere of
infinite radius ]

42. Power of a point w.r.t. a sphere; 4-21. Positive, negative and

Zers power; power w.r.t. a point-sphere; 422, Power
wir.t. a plane :

64

74

75



CONTENTS

3. Sphere through four given points; 431. Condition that five
points should lie on a sphere

4-41, Intersection of sphere and plane; 4-42. Intersection of two
or more spheres; 4-421, Radical plane of two spheres;
4-422. Radical axis of three spheres; 4423, Radical centre
of four spheres; 4-43, Anple of intersection of two spheres;
4-431. Condition that two spheres should be orthogonal;
4-483. Sphere orthogonal to four given spheres

45, Pole and polar w.r.t. = sphere; 451, Jacobian of four spheres

4-8. Lincar systems of spheres; 4-61, One-parameter system, co-
axial systemn or pencil; 462, Two-parameter system ; 4-63,
Three-parameter system ; 4-62, Linear relationsconnecting
the coefficients

¢7. Inversion in a sphere; 471. Inverse of a sphere: 472. In-
variance of angles; #73. Stereographic prajection; 4-74.
Inversion as a geometrical transformation

4-8. The circle at infinity; 48t. Isotropic lines and planes

4-9. Examples

s

7
)\

7

Chap. V. The cone and cylinder AV

5-1. Equation of a cone; 511, General equation of gqufadric cone
with vertex at origin; 5-12. Circular cone oz te of revo-
lution; 5132, Conditions for circular coney 5123, The
conic at infinity on a circular cone has dottble contact with
the circle at infinity X )

52, Interscction of a cone and a plane thréugl the vertex; 52i.
Tangent-plane, tangential equations;*6-22. Condition that
two generators should be at right'engles; 523, Angle be.
tween two generating lines; 58310 Condition that Iines of
intersection should be real (NS

5-3. Polar of a point w.r.t. a cone %

5-4. Reciprocal cones; 841. Reciprocal of a cone

55. Rectangular generatorsg\351, Three mutually rectangular
generators; 5-52. Reafangular conc; 5-58. Orthogonal cone

5-8. Relation between gebmetry of cones and geometry of conics

5%, Cylinders; 571, &iﬁcation of cylinders; 572, 'I'angential
equations afa cylinder; 573. Reciprocal of a cylinder;
574, Developables

58. Examples )/

. ,t\.“
Chap. \@;\Typcs of surfaces of the second order

& 1.88urfaces of revolution; 611, Oblate and prolate spheroids;
2N 6-12, Hyperboloids of revolution; 6121, of two sheets;
o \¥% 6-122. of one sheet; 613, Paraboloid of revolution: 6-14,
\ } Other surfaces of revolution, the anchor-ring; §15. Circu-
lar cone and cylinder
6:21, Ellipsoid; 622. Hyperboloid of two sheets; 8-28. Hyper-
boloid of one sheet; 6-24. Elliptic paraboloid; 6-25. Hyper-
bolic paraboloid; 6851, Alternative equation
6:3. Ruledsurfaces; 8-31. Hyperboloid generated by revalving line ;
8:32. Hyperboloid with its two sets of generating lines;
8-33. Hyperbolic paraboloid
6-4, Imaginary generating lines of ellipsoid, etc.; 841, "The elliptic
paraboloid
§-5. Examples

vii

page 76

77
79

81

94

a7
o0
100

102
104

Y]
1oy

IIC

113

Iid

117
119

£\
7\B6 "
8o



viit

CONTENTS

Chap. VII. FElementary properties of quadric

(i

8.

7-4.

T-5.
T8,
7T

T8
7o,

surfaces derived from their simplest equa-
tions

Tangential properties; 7-21. Intersection of a straightline with
a quadric; 7-22, Tangent at a point; 7-221, Direction-
cosines of normal; 7-222. Tangent-plane to central quad-
ric; 7-223. Tangent-plane to paraboloid; 7-23. Tungential
equation; 7231, of paraboloid .

Pole and polar; 7-31. Definition of polar-plane; 7-32. Con-
jugate points; 733. Pole of a plane; 7-34. Conjugate plancs;

. The canonical equations; 7-11. Symmetry page 121
T8

z

12.\

7-35. Tangent-cone; 7-351. Rectangularhyperboloid ; 7-852. , '\:\

QOrthoptic sphere; orthogonal hyperboloid; 7:353. Ens
veloping cylinder; 7-86. Polar of a line; 7-87. Polar tetra-
hedra; 7-38. Conjugate lines; 7-381. Self-conjugate tgtra-
hedra; 7-382. U'etrahedra in perspective RO

Diamctral planes ; 7-41. Centre of a plane section ; T-4{13Alter-
native method; 7412, Section with a given_centre; 7T-413.
Diametral plane conjugate to a given dizsction; 7414,
Locus of mid-points of chords through a fived point; T-42.
Conjugate diameters; 7421, Sum of squares of conjugate
diameters; 7-422. Volume of parallelefiped on three con-
jugate diameters; 7-43. Principal.diatfietral planes and
axcs NS

The hvperboloids )

Quadric referred to conjugate dismeters .

Neormals; 771, Every normalss perpendicular to its polar;
7-72. Number of normalsrem a given point; 7:73. Lines of
curvature o\

The paraboloids; 7-81. Biatnetral planes; 7-828. Normals

Examples A

A

74\

\

Chap. VIIT. ;The reduction of the general equa-

tion of.fhe second degree
X

81, Ge eral cquation; 811, Quadric through nine points; $42.
,\e’:&l !

adric containing a given conic; 813. Quadrics through

\Co two conics -
B8, Conjugate points; 8-21. Polar-plane; 8-22. Generating lines;

e

8-23. Tangent-plane; 8281. Tangent-plane meets surface
in two generating lines; 834%. Hyperbolic, parabolic and
elliptic points; 8:25, Polar-lines = -

&3. Invariants; 8-31. Discriminant, condition for a cone; 8311.

Degenerate quadrics; 332, Absolute and relative in-
variants, modulus of transformation; 8-33, Definition of
mvariant; 8-331. Lemma on determinants; $232, An in-
variant is transformed by multiplying by a power of the
modulus; weight of an invariant; $-34. Projective in-
variant of general quadric; 8-341. A quadric has no absolute
projective invariant; 8-342. A quadric has only one pro-
Jective invariant; 8-38. Condition for real generating lines

8-4, Polarity; 841. Correlations: %42. Condition for a polarity;

8-43, Null-system ; 8431, Null-system in statics ; 8-432, The
linear cornplex

124

131
136
137

137
135
140

144

147

149

154



CONTENTS ix
51. Canonical equation of a quadric; 852, Specialised and de-
zenerate quadrics; 8-58, Projective classification of conics;
8-54. Projective classification of quadries page 158
8-8. Metrical aspect of a quadnc 261, . Diametral planes; 882,
The centre; 863. Conic at infiruty on a quadric: 864
Metrical classification of quadrics; 8§85, Principal dia
metral planes 16z
87. The discriminating cubic; 871. Roots all real; 272, Multiple
roots; 8721, Lemma on determinants; 'g-722, Relation
between multiple roots and rank of matrm 8-73. The
principal directions; 8-74. Principal axes in relation to the
circle at infinity 167
88. Transformation of rectangular coordinates ; 881, Reduction to
axes through the centre; 8-82. Rotation of axes, invariants;
8-83. Reduction to the principal axes; 8-84. Reduction of
the paraboloid; 8-85. Elliptic and hyperbollc cylinders; Ko
886, Parabolic cnlmdcr R o
B-9. Quadrics of revolution; 895, Examples {73
N
Chap. IX. Generating lines and paramctrig? re-
presentation N
1. Lines on a surface; 211. Two systems of ge\&mtors of a
quadric I81
¢-2. Equation of quadric when two generators mpposﬂe edges
of thetetrahedron of reference ; 924, Eq:,&wns ofthe pene-
rating lines; 9-22. Gencrators of the}:araboimd parallel to
one or other of two planes 182
9.3. Regulus generated by two pmjcc;t?ve. pcnc1ls of planes; 9-31.
Quadric generated by trangiersals of threc skew lines;
932, Quadric with two guen generators of different
systems 183
94, Lines meeting one, two, t:hree or four fixed lines; 9-41. Com-
mon transversals fLtwo pairs of polars w.r.t. 2 quadric 185
9-51. Freedom- equatlons.o‘f\hyperbolmdnf one sheet ; §-52. Hyper-
bolic paraboloidi,) 88
98, Parametric equatiphs of a curve; 9-61, The conic; 9-82. The
space-cuble; %63, Every conic can be represented bv
rational freedom cquations; 9-64. Every non-plane cubic
curve 15\1'81:101'131 188
7. Parametfidyequations of a surface; 9-71. Representation on a
pldne}” 972, Sterengraphic pm_]ectmn 973, Order of the
Si)rfﬂce represented by parametric equations; %731.
Surfaces répresented by quadratic equations IgI
a- 9 \fkﬂmp les 195
<€kap. X. Plane sections of a quadric
10-1. Species of sections 150
10-2. Centre of a plane section; 10-21. The parabeloid 200
10-81. Axes of a central plane section; 10-32. Non-central section
10-33. Asymptotes of plane section 200
10-4. Cireular sections; 10-41. Central quadrics; 10-42. Paraboloids 204
10-5. DModels 205
10-6. Sphere containing two circular sections 207
10-7. Umibilies; 10-11, Configuration of the umbilics 207
10-9, Examples 200



x o CONTENTS
‘Chap. X1. Tangential equations

- 111, Homogenecus point- and plane-coordinates page 212

“11-21. Tangent-plane of a surface; 11-22. Point of an envelope | 212
11-8. Tangential equation derived from point-equation, and vire

versa; 11-81. Tangential equation of guadric . 217

11-4, Some special forms of the tangential equation of a quadric 214
11-5, Order and class of a suiface; 11-51, Plane curve dual to cone;

11-53. Tengential equation of a plane curve 215

217

11-6. Tangential equations of a cone o . .
11'7. Equations in line-coordinates ; 11:71. Line-equation ofa conic;
1172, of quadric; 11-78, Polar of a line w.r.t. a quadric;

11-74. Another form of the line-equation 21
11:8, Degenerate quadric envelopes 23
11-9, Examples &2
o\
. Chap. XII. Foci and focal properties O
12-1, Foci of a conic; 1211, Focal axes of a quadric; 1212, Foelef
8 quadric o N\ 224
122, Analvtical treatment; 12-21, Focal axes; 12-22. Focal ¢onics;
i 12-23. Foci; 12-34. Relation to the circularsgections,
directrices; 12-25. Relation of the focal eomies to one
© another ' \ 227
12-31. Metrical property of foei; 12:82. Sections ~1Q)«rmal to a focal-
conic; 12-83, Quadrics having ring-co%ax:t; 12-34. Dande-
Iin’s theorem 'S . 233
12-4. Confoeal quadrics; 12-41. Confocalsitvough a given point;
12-42. T'riple orthogonal systern ; 1243, Confocal guadrics
in tangential coordinates; 12431¢ The focal developable; .
12-44, Confocals touching a'given line 23g
12:5, 'The paraboloids; 1251, Confocal paraholoids i 230
12:61. Foci of a cone; 12:68, €glinder; 1268, Confocal cones;
12-64. Confocal cylinders 241
12-7, Conjugate focal conigs 244

12-8, All guadrics of a confuchl system have the same foct and focal

axes; 1881, Vhe focal akes are generators of quadrics of

the confuceﬂgiystem 246
12-9, DeformableMramework of generating lines of a quadric;

1284, ‘['he’paraboloid ; 12:95, Examples 247

Chap. XIU\ Linear systems of quadrics

18-1. Ldfieaf one-parameter systern or pencil of quadric loci; 13-11.
,\\~Base—cu_rve; 13-12. One quadrie through each point; 13-13.
& Involution on a line; 1314, "I'wo quadrics touching a given
R line; 13-18. Three quadrics touching a given planc; 1315,
2N\ Common self-polar tetrahedron of two quadrics; 1317,
a\" - Four cones in a pencil of quadrics 231
\ ; 132, Linear tangential one-parameter system; 13-21. Tangent-
developable; 1322, One quadric touching a given plane;
18-28. T'wo touching a given line; 13-24. Three passing
through a given point; 18-25. Four quadric-envelopes of a
pencil are conies - . 253
13-3. Confocal ‘quadrics; 1831, Curves of intersection of confocal
quadrics, lines of curvature; 13:32. 'The indicatrix, lines of
curvature through an umbilic; 13-88. Lines of curvature
- projected into confocul conics; 13-34. Lines of curvature of
a cone of a cylinder; 18-85, Sphero-conics; 1836, Con-
focal conics in non-euclidean geometry - 254



CONTEN'TS xi

184, Polar properties of pencil of quadrics; 13-41. The polar-planes
of a given point ull pass through one line; 13-42, The polar
complex of lines; 13-43. Locus of points corresponding to
coplanar lines of the complex; 13-431, The poles of a given
plane generate a cubic curve; 13-44, The polars of a given
line generate a regulus; 12-25, The tetrahedral complex page 261

i&5. Polar properties of a tangential system of quadrics 264

1361, Quadrics through eight fixed points; 13-62. Set of eight
assaciated points 265

13:7. Paraboloids and rectangular hyperboloids in # linear system 266

13-8. Classification of linear systems; 1381, General casc;
13811, Double-contact; 13-812. Ring-contact; 18-813.
Quadruple-contact; 13-82. Simple contact, base-curve a
nedal quartic; 13821, Stationary contact; 13-822, Triple-
contact; 18-823. Contact along two lines; 18-83, Base-curve 4
a space-cubic and a choid; 13831, Contact along a double 4
generator; 13-84. Stationary contact, base-curve a cuspidal '\
quartic; 13-841, Base-curve a conic and two lines inter- ¢
sccting on ity 18-85, A space-cubic and a tangent; 13-88. /%G
Invariant-factors: 18-87, Singular case AN, 267
13-4, Examples 'L 274

. "
Chap. XIV, Curves and developables \

14-1. Curves and their representation; 14-11. Order o{gl turve
14-12, Parametric representation ; 14138, Litrothg Yheoremn ;
14-14, Intersection of two surfaces { & 297
14-21, Complex of secunts and congruence of \biletants; 1423,
Apparent double-points; 1423, Magimim number of
double-points of a plane curve; 14-281. Rational plane
curves; 14-232. Unicursal curves Hawe zero deficiency or

genus; 14-24, Genus of a space,curve ) 281
14-3. Tangents and osculating planes (& 284
i4-4. Developables; 14-41. Edge of fegression; 14-42, Significance

of term “ developable™;,14-38, Cuspidal edge . 284
14-51, Order, class and rank of aéutve or developable; 14-52, Equa-

tions determining thegatik and class 286

14-6. THE SpacE-Cubic; 1461, Intersection of quadriccones; 14-62.
Secants and bisecants; 14-631, Projective construction;
14-632. Tangents and osculating planes; 1484, Quadrics
containing agulic curve; 14-641. Intersection of cubic and
coniclvihg\dniquadric; 14-842. Involution en a cubic curve}
14843, Lommon generator of two quadrics containing a
cubic/gurve; 14-851, One bisecant through every point in
ACey 14-652, Class and 1ank of a cubic curve; 14-66,
sﬁ_ﬁc curve through six points: 14-671. Intersection of
N cubic curves lying on a quadric; 14672, Through five
_Wgiven points on a quadric pass two cubics lying on the
7% surface; 14681, Line-coordinates of a tangent; 14882
#N\N\/  Osculating planes; 14888, Linear complex containing the
/ tangents ; 14-89. Metrical classification of cubic curves 287
4.7, Quarric CURVES, two species 265
1471, QuarTIcs oF FIRsT SrECIss, complete intersection of two
quadries; 14-711. Cuts every generator of quadric in two
points; 14713, Partial intersection of a quadric and a cubic
surface; 14:713. No trisccants, no apparent double-points,
not rational ; 14714, Parametric representation by elliptic
functions; 14-716. Nodal quartic; 14-7151. Rational para-
metric representation of nodal quartic; 14716, Cuspidal
quartic; 14 T17. Class and rank of quartics of first species;
14718, Tangent-developable of two quadrics 296



xii CONTENTS

14:72. QUARTICS OF SECOND SPECTES; 14-721. Intersection of a
- quadric surface and a cubic cone having a double-line
coinciding with a generator of the quadric; 14722, Inter-

section of 2 quadric and a cubic surface having two skew

lines in common; 14-723. Trisecants; 14-724. Parametric
representation; 14-725. Three types of guartics of Second

Species . ) puge 301
14:8. Number of intersections of two curves (conics, cubics or
quartics) lying on a quadric surface 303
148, Curve of striction of a regulus; 1495, Examples 704
Chap. XV. Invariants of a pair of quadrics A\
1541, Simultaneous jnvariants of two quadrics: 1511, Simplified .
forms 8\ 309

152, Geometrical meanings for the vanishing of the invariantgs
1521, €' = o; ‘w® tetrahedra inscribed in S and self-polar,
w.r.t, ¥, 8 outpolar to Z'; 15211, w3 tetrahedra citeums
scribed to E° and self-polar w.rt. 8, %7 inpolax o 5
15-212. Examples: eight associated points; 1528/% = o,
= tetrahedra self-polar w.rt. § and hawidg = cdges
touching § : \V
1531, Relation of ® to the line-equations of the\lo quadrics;
15-82, Invariants for the reciprocal systepiy 15:38. Ahsolute
invariants; 1534, Examples of invariaft/équations; 15-85,
Contact of quadrics; 15-36. Case wheteone of the quadrics
Is a cone; 15-37, or 3 conic W9,
" 184, Metrical applications; 15-41. Affine ¥ransformation; 15-42,
Orthogonal transformation ; 1548, Simultaneous invariants
of circle at infinity arid conisattinfinity on quadric; 1544,
Conditions for rectanguidtvand orthogonal hyperboloids:
ibﬁlflnﬁd Orthocyclic hypetboloids; 1546. Orthofocal hyper-
oloids . Y
1851, Contravariants; 15528Tangential equation of curve of infer-
section of two duadrics; 15-53. Covariants; 1554, Co-
variants and cériyravariants viewed as invariants 323
156:61. Reciprocal q@r’ms ; 1582, Expression of reciprocal as a
covariang 328
- 157, Iarmonic ¢dmplex of two quadrics 320
1581, Line-equatien of curve of intersection of two quadrics;
15-88, “Phe various equations of a curve and its develop-
&;/15-83. Point-equation of developable belonging to
~Llrve of intersection of two quadrics 331
15-91\Cp\1jugate generators; 15:82, Rectangular hyperboloids in
£\ non-euclidean geometry; 1595, Examples 333

3I0

321

Gliap. XV1. Line geometry :

NG P]iickcr’_s coordinates; 16-12. Condition for intersection of
) ' two lines; 16-13, Complex, congruence, and line-series;
18-14. Lines through a given point or in a given plane;
18-15. Degree of a complex; 1816, Linear complex; pole

and polar-plane, polar-lines
16-2. Geometry of four dimensions; 18-21. Linear cquations and
: loci; 18-22, Quadrics in S, ; conjugate points; 18-23, Lines
ona quadric Ve*; 16-24. Hypercones: 16-25. The cornplete

system of «2 lincs on q 7,2
16-3. Geometr}r_ of five dimensions; 16-81. I,inear spaces; 16-32.
Quadries in S;; 1633, Two systems of =® planes ona 17,2;

16-84. Intersection of 2 quadric with 2 linear space; tan-
gents and polars

KXY

340

343



CONTENTS

16-4. Representation of lines in ordinary space by points on a I7,?
{w); notation; 1641, Condition for intersection of two
lines; 16-42, The planes of w: field-planes and bundle-

planes; 16-43. The lines of w Page 343

16-5, The linear complex; 1651. Its invariant; 16-52. Special or
singular linear com-ale‘( 16-63. Lmear CONZruence;
18-531. Singular linear congmence 16-532. Paraboiic linear
congruence ; 16-54, Linear series or regulus; 18-85, Deter-
mination of a linear complex by five Lines

16+8. Polar properties of a linear complex; 16:61. Pole and polar-
plane; 16:611. Change of netation; 16-621. Condition for
a singular complex; 18622, Sinpular congruence; 16-623.
Degenerate regulus; 16-63. Polar lines; 16:-64. Conjugate
linear complexes; 16-65. Homographies and involutions
determined by two linear complexes

16-7, Canonical equation of a quadric in .S;

168, The quadratic complex; 168-81. Four lines in common with any
regulus; 16-82. Singular points and planes; singular sur-
face; 16-83. Polar of a line w.r.t. a quadratic complexg™
polar congruence; 16-831. Tangent linear congruence,;
16-84. bmguldrlmes ; 16-85. Order and class of the singular
surface; 18-86. Co-singular quadratic complexes \O™\

18-9. Special ty pe&, of quadratic complexes; general ‘ypev'with
singular surface a Kummer Surface 16-81, Cornplex of
tangent-lines to a quadric; 16-92, Complcx of \gcnt lines
to a cone; 16:93, Tetrahedral complex ] 9‘-1 Hazrmonic

; complex; tetrahcdrmd Fresnel's wave su ace

18-85, Examples ¢

):’

Chap. XVII. Algebraic surfac’é’s’"

17-1. Delinition, reducible and irredumhle surfaces; 17-11. Order
of a surface; 17-12. Lang,ent planc; 17 13 Section by
tangent-plane at O has.a* double-point at &; 17-14. In-
flexional tangentspshyperbolic, elliptic and parabolic
points; 17-15. *ql.&e n determining the points in which a
line cuts the sur 17:18. Equation of the tangent-plane
at 2 point; AT, (_,Lm_]ugdte tcmgents, stationary plane,
point of osealation

17-2, Curvature )W #21. Meunier’s theorem; 17-22, Gaussian mea-
sure curvature, mean Curvatuee

17-3. Polars; {7 1. First polar passes through points of contact of

angent-planes; 1722, The Hessian; 17-33, The Steinerian

17-4. C Ht-number of an algebraic smiace, 1744, Cluss of a

mrfdce 17-42. Reciprocal surfaces

175, Wiouble- pomts 17-51. Node or conical point; 17-52. Dis-

¢N\%  crimunant; 17-53. Binode and unode; 17-531. Reduction of
A\ class for a node, binode or unode; 1758, T rope, double
\ 4 tangent-plane; 17-56. 'l'ritangent-planes; 17-86. Bitangent
developable; 17-57. '[riple-points, double or nodal curve

17-6. Lines and conics lying on a surface

17-7. RuLep SURFACES; 17-71. Interscction of three complexes;
1772, Tangent—plane through a generator; 17-73. chree
of a ruled surface; 17-74. Rank of a surface; 17-75, Genus;
17-761, Double-curve; 17-782. Bitangcnt developab]e
17-768, Qrder of the double-curve; 17-77, Directrixcurves;
17-78. Ruled cubics; 17-781, Ca‘,lev s ruled cubic; £7- 79,
Ruled quartics; 17 ?91 Quartlcdevelopablc 17:792, Non-
developable ruled quartics

N

346

358
362

364
366
369
372

373
378

379



xiv CONTENTS

17-8. Cuslc Surraces; 17-81. Generated by point common to
corresponding planes of three refated bundles; 17-811,
CGreometrical determination of correlation between bundies
of plancs; 17-88. Every cubic surfaceé is rational; 17-83.
Double and triple tangent-planes; 17-84. Through cvery
line of the surface pass fAve tritangent planes; 17-85,
T'hrough a double-point pass six lines; 17-861, A cubic
surface without double-points has twenty-seven lines;

17-862, Forty-five tritangent planes; 17-863. Schlifli's no-
tation ; 17-87, The double-six; 17-88, Classification of cubic
surfaces according to the reality of the twenty-seven
lines; 17-89. Projective classification according to double- N
points pagaiss

17-8. QuarTic Sunraces: 17-91. Lines on a quartic surface; 17811, 4 |
The Weddle surface; 17-82. Rational quartics; 17921 N\

" Monoids; 17-93. "Uhe Steiner surfuce; 17-931. Paramepricy ©
equations; 17-832. Possesses four tropes; 17-933. w=?conies’
17-834, Tangential equation; 17-985, Parametric equaiions
of second degree represent a Steiner surface; 1794 The
surfuce of Veronese, [5; 17-941. Possesgesdﬁ'conics;
17-943, Envelope of four-flats, M,?, whichcunt'the surface
of Veronese in pairs of conics; 17-843, Tangent-plane at a
point on ¥%; 17-944, 77,* is a doublesgurface on Id,*;
17-85. Normal varieties ; 17-951. Anormalydrietyis rational ;
17-952. has no double-points; 17.88/ Projections of the
surface of Veronese on space of ghree ditnensions; 17-97.
Rational quarticsurface with a double-line ; 17-88. Rational
quartic surface with.a doublestonic; 17-981. Cyclides;
17-982, Projection of the susface of intersection of two
quadrics in 5 &N CoaeT

1709, Examples RN 408

Index S 411




PRETFACE

Until recent years there has been a tendency, in England at
least, to regard Geometry as if it were a mine which had been
worked out and, exhausted, Mathematical interest was largely
transferred to analysis. The great stimulus given by Cayley,
Salmon and Clifford in the ’sixties and *seventies of last century
had dissipated, and no great successor to these pioneers had

appeared. Butif their influence in Britain had become weakenedgs,
it grew upon the Continent, especially in Italy, and it is frofa®

Italy, largely through the medium of Professor H. F. Baker, that
once more a renewed interest in geometry has arisencand is
flourishing in England. K7,

It is seventy-one years since Salmon’s Treatise anthe Analytic
Geometry of Three Dimensions was first published\\It has been
translated inte German, French and Italian,\and has been
expanded into two volumes in later Englisheditions.* In its
first form it embodied the results of many.yery recent researches,
and, brought up to date and including Several new topics, it is
still recognised as the standard workyud“the English language,
There seems, however, to be room fox's text-book written more
in accordance with the tendenciesof the present *‘ cosmic epoch
to apply a suggestive term of Wihitchead’s. Fashions in mathe-
matics, as in other things, altex, 'The facts remain but their values
change. Rather, perhapg) new principles, wider and more
unifying, are discove e{f,u leading to diffcrent treatment and a
different emphasis er%}g put on the various developments,

In some ways thé present text-book should be regarded as an
introduction to\ Professor Baker’s inspiring volumes on the
Principles of fGeometry. 'This work, especially in the two recent
volumes, shog¥s strongly the Italian influence, and the same must
be ackn@dedged in the case of the present text-book. It is
naturalithat the Italian school, which has been responsible for
a gpeab part of modern geometrical research, should have pro-
duced also some of the finest text-books, such as Bianchi’s
Bezioni di geometria analitica (Pisa, 1920), Castelnuovo’s book
with the same title (6th ed. Milan, 1924), Berzolari’s two Hoepli
manuals entitled Geometria analitica (Milan: 1, 31d ed.1923;
11, 2nd ed. 1922), and Comessati’s Lezioni di geometria analitica e
proiettiva (Milan, 1930). To these, as well as to Salmon, Baker,
the Collected Mathematical Papers of Cayley and of Klein,

* Vol 1, 7th ed. revised by R.-A, P. Rogers and edited by C. H, Rowe,
1928 Vol 2, 5th ed. revised by Rogers, 15153.

Q!
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Hudson's classic on Kummer’s Quartic Surface, Pascal’s Reper-
torium, the Enzyklopidie der mathematischen Wissenschaflen, and
other sources difficult to particularise, I have to express my
indebtedness. ]

Being an elementary text-book it may be used by beginners.
For such it may be useful to indicate a first course of reading:
Chap. 1 (omitting 1-8%), Chap. 11 (omitting 2-34, 2:35, 2:36, 2°41,
2'5, 2731, 28, 2:g1), Chap. IV (omitting 4-2, 4:31, 4'51, 4-81),
Chap. v (omitting 5122, 5-123, 523, 50), Chap. v1, Chap,.yir
. {omitting 7-38, 7-73}, Chap. viu (omitting 8-11-8-13, %24,
8-41-8-432, 8-53-8-54, 8:64, 872, 874, 8-9), Chap. 1x (phitting
93, 94, 9°6, 97), Chap. X (omitting 1071). N\

Except for a few insignificant references the subject-matter
of differential geometry has been excluded fromgthis book. On
the other hand free use has been made of Hgmiogeneous co-
ordinates, tangential coordinates and lingcedbrdinates, In the |
case of metrical gcometry the circle at infihity is used wherever
it is applicable; this is especially the.case m the treatment of
foci, which follows somewhat closel%' on the lines of Berzolari,
There are several illustrative Jéferences to Non-Euclidean
Geometry, and much use has beémdmade, as in Baker’s volumes,
of geometry of higher dimensieus, especially in the exposition of
line-geometry. In the enumgration of types of linear systems of
quadrics opportunity has\Bbeen taken to explain the notation of
invariant-factors. No “txhaustive treatment of the theory of
algebraic curves an surfaces has been attempted; the two
chapters which héive been devoted to these are intended rather
to be suggestf\@g and are confined practically to curves of the
third and fewurth orders, and to ruled and rational cubic and.
quartic sutfices. ' ; '

I have'té express my grateful thanks to Mr F, P. Whitc for
muclf¢hcouragement in the preparation of the book ; to Professor
\KS‘addier, D.Sc., Christchurch, who read the entire manu-
Script, for many helpful and valuable suggestions; and to Mr F. I\
SMiles, MLA., Lecturer in Mathematics at Victoria University

College, for great assistance in reading the proof-sheets and in
checking the examples, :

. I have also to acknowledge with thanks the courtesy and close
attention of the Staff of the Cambridge University Press.

; 'This is to be understood as including all further subdivisions, as 1-81,
18z, etc.

D. M. Y. SOMMERVILLE
VICTORIA UNIY. COLL.

WELLINGTON, N,Z.
October 1933



W’

ANALYTICAL GEOMETRY
OF THREE DIMENSIONS

CHAPTER1
CARTESIAN CCORDINATESYSTEM

1-1. Cartesian coordinates.

In a plane the position of a point P is determined by two cosa
ordinates, x and b referred to two straight lines OX, GV, ;l'u?"
coordinate-axes; viz, if NP {| OX and MP || OY, so that we fave
a p arallelogram OM’P\ then x = OM = NP, y = ON £ WP,

'1'o fix the position of a point in space we take ﬂ‘{&c planes.
These have a point O in common and
intersect in pairs in three lines X'OX,
Y'OY, Z70Z. Ois called the origin,
the three lines the coordinate-axes,
and the three planes the coordinate- \D
plancs. A\ E

Let P be any point. Through P
draw PL parallel to XOX’ eltting
the planc YOZ in L, and{gimilarly
P and PN parallel to theh’ther axes. Fig. 1
Let the plane MPN*Gut OX in I, and similarly obtain M’
and N’, We obtainthen a parallelepiped whose faces are paraliel
to the coordindteSplanes, and edges parallnl to the coordinate-
axes, and OPNE a diagonal. The figure is determined by the
lengths 0&02' oM, ON,

in thl;,\Jsual way we attach signs to lengths measured along
the.dxes, defining by a convention that distanccs measured in
Grig~direction are positive, distances measured in the opposite

}irection being negative. With these conventions we then define
the coordinates of the point P as the three lengths
OL =g, OM' =y, ON =z :
To every point P there corresponds uniquely a set of three num-
bers [x, y, 2], and conversely to every set of three numbers,
positive or negative, there corresponds a unique point.
8AC ' .
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1-11. Convention of signs.

Let the positive directions along the axes of & and 4 be defined
arbitrarily, say OX and OY; then in the plane AOY we may
pass from ©X to OY by a rotation through an angle XOVY less
than two right angles. Viewed from one side of the planc this
rotation is clockwise, and from the other side it appears counter-
clockwise, We define that side of the plane from which the
rotation appears to be counter-clockwise as the positive stde of
the plane. Then the positive direction of the axis of 2 1 défined
to be that which lies on the positive side of the plane YO This
relation then holds for each of the axes, viz. the positi€ddirection
of the axis of x is on the positive side of the plang W7, and the
positive direction of the axis of ¥ is on the pégitive side of the
plane ZOX. This is called a right-handel(system of caricsian

coordinates. \
s\

1-2. When the planes are mutugl{({vi‘at right angles we call it
a rectangular system, otherwise ipadwblique, We shall confine our
attention for the present to reetarigular coordinates.

OP is called the radius-yettor of P, denoted by 7. Since PN
is perpendicular to the plitte XOY, ON is the orthogonal pro-
jection, or simply the Projection, of OP on the plane XOY.
Again, since the glahe PML'N 1 OX, ’L" 1L OX and OL" is
the projection\o'{L P on the line OX. :

Let the angles which OP makes with the positive directions
of the age@be «, f, y, then

’\ a=rcosw, y=rcosf, ==rcosy.
\Tl\ie position of P is determined by the angles «, §, y and the

. zjrhlius—vector r, for these then determine x, 3, 2. '[he angles by
3 themselves determine only the direction of the line OP, We call

them the direction-angles of the line OP, As the cosines of these
angles oceur repeatedly it is convenient to call them the direction-
cosines, and frequently we dendte them by single letters /, i, .
There is a redundance in fixing the position of a point by the
radius-vector and its direction-angles, for these are four num-
bers, and three, x, y, 2, are suflicicnt to fix the position. We shall '

find that the three direction-cosines are connected by an identical
relation.
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1-21., The direction-angles are not uniquely defined since
~ each is indeterminate to an added multiple of 27, but the direc-
tion-cosines are unique. In fact, r being always positive, the
direction-cosines /, m, # are uniquely defined as
I=xfr, m=yfr, n=gfr

1-22. To determine the radius-vector in terms of the rectangular
covrdinates.

By the theorem of Pythagoras

OP:=0ON*+ NPt= QL4 L'N*+ NP2,

N
Hence PP=x24 2428 (\A
7N\S ©
1-23. Identity connecting the divection-costnes. \
Putting x=rcosa, y=rcos3, x=rcosy, we find, on, dm,dmg
2 y
by 7%, costao-cos?fB+cos?y=1, R4

It is often convenient 1o speak of a line whese direction-
cosines are propertional to three given nu:p’Q&r’s I, m, n. The
actual values of the direction-cosines are gbtained by dividing
each by 4/(#+m?+n2). For suppose tlie/actual values to be
Rl, b, kn;, then L2 T k‘z"’:i:"l’

hence Rz (£ +md :L-’i's"’)_é.

FEx. Find the direction-cosincs: of the line j joining the origin to the
point (-1, 2, 2).
Here =g dh—dr g, hence =1,
Then =—3m=%n=E

N\
Ll

1-3. Change of orlgm.

Let a ne cnorduutc svstem be constm(,ted with origin
O’ =[X, Ypd¥and coordinate-
planes licl to the old ones.
Let theicvordinates of a point P
sefi er}ed to the two systems be
%y, z] and [« ¥, 2], Draw
through P a line parallel to the
axis of x cutting the planes vOz
and y¥'0'2" in L and L’, and
let" the plane 3’0’z cut Ox
in K. Then since the parallel
planes 30z, 0’2" intercept
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equal segments on parallel lines, LI~ OK. But LP=x,I'P=y,
0K =X, hence

x=x+X] x'=x—X]
similarly y=y'+¥ . and y'=y—Y -
z:z'.+Zj g=z—L|

«', 9, & arc the coordinates of P relative to O’=[X, ¥, Z].
T'his may be described in vector language thus. The step from
O to P can be broken up into the two steps O to O" and O tOWP.
Further the step from O to &' can be broken up into threk:..;itbps
+ of lengths X, ¥, Z paralle] to the axes, and similarly fpkiﬁhe steps
from O to P and O’ to P. Parallel steps are then gimiply added.

1-4. Distance between two points. e\ e
Let Py=[x1, ¥1, 21, Pa=[%, Y2, ). 'Thedrthe coordinates of
P, referred to parallel axes through P, dxg”
Ky — X1,y J’z‘}"l‘v.?ﬂ_zu

and P, P, is the relative radius;?gétbr. Hence
(Prby)t = (2= 5{‘{1}.{4"(}’2 —¥)* + (s — =)

1:5. Angle be:tween“tﬁ;d Yines.

Let the two linesass through O and have direction-angles
[, 1y 4] and %182, va]. Take two points P,=[xy, ¥;, 2] and
Py=[x3, ¥a, %], one on each; let OP,=r,, OP,=r, and let the
angle PIOIZQI;-:Q. 'Then

:'.\:“:(PIP‘Z 2=OP12+ OP22—20P1 . OP2 COSQ,
the&éfbf’é Z(xy— 2y P =71 412 — 27y 7, cosl, '

a -
j}zénce T2+ Xy — 2k ap = 2y 2+ 2,2 — 21y 1y cos O

~ ) But ;=71 COStey, Xy=7, COSN,, SIC.
P
T\ Therefore X #0080, COS0y =7, 7, cOsf,
e, cos = Cos 2 COSa, + o8 By Cos B+ Cosyy COSY,

=3 cosuy Cosop= 2.

151, If the direction-cosines are only proportional to the
numbers [f,, #y, m) and [L, m,, #,], then

cosli=— 2y 2
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1:532, A useful expression may be found alsa for sin?8,

We have  sin®f=1x— (3] Ly =31t5LE — (2] L)

=X (2 + mytn®) — 2Zan iy 0y
=2 (1, — tym, ),

These results may be applied to any two lines. When two lines
do not interscet we define the angle dctermined by them as the
angle between two lines through O parallel to the given lines.
All parallel lines arc then considered as having the same direc-
tion-angles. A »

(N

1-61. Condition for perpendicularity. O

If two lines [, my, my) and {4, my, ny) are perpenckcu‘lar or
orthogonal, their angle 6 = }=, and cos # = o, hean\

I lz—i—mlmg+n1n2—-0‘
or _ Zcosoy COSt =0 | ’.\\,,’

Conversely, if this condition is satistied, &0 # = o and 8 = }.

The expression T/ ], is linear in eaclrgfthe two sets of direc-
tion-cosines /y, #y, my and k, my, uy, and also symmetrical as
regards these two sets. It is the {m’mem symmetrical expression
associated with the quadratic_ exPrestn ZE,

1-62. Conditions for I\)éi'allelism.

By definttion, t\\o es arc parallel when they have the same
direction-angles. It ows then that sin @ =0 and # = o.

Conversely, 1f E«v—— o, sinf=o and Z{mn,—mn ) =0. For
real values of the Jirection-cosines this can be true only if

ml’ag‘_mz?zl—o, mby—mil =0, Lhmy—ILm=o0,
oy L m o
hencey L
\\ _ L m, my

’“‘;If”fl, wy, 1y and L, my, #, are the actual direction-cosines we

ave also .
2w b nt=1=1%+m 4+ n2,

Putting cach of the equal ratios equal to ¢ and substituting
- L=tl, m=tm,, m=1in, '

we get LA m A =L w2

Hence t=+1.
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If =+ 1, the direction-cosines are identical; if 7= -1, they
are equal but of opposite sign. The latter case is interpreted to
mean that the lines are in opposite senses. In both cases they
are parallel.

If I, m,, n, and &, my, n, are only numbers proportional to the
direction-cosines, the necessary and suthcient conditions for
parallelism are

Limyimg=1ly0mytny, A

N ¢

oA

equivalent to tzo conditions only.

177. Position-ratio of a point with regard to.‘ fwb base-
_ points. : R N

The formulae for the coordinates (rectangula{ 6r oblique) of a
point P=[x, y, ] dividing the join of two galats 1 ={x, 11, 7]
and P,=[x;, v, 2,] in a given ratio {: Qb f:rare L\dLll\ the
same as in plane geometry. For if th pl'mes through Py, [%, P
parailel to the plane of yz cut Ox W<y, Ly, L, then L cuts £, L,
in thm same ratio, and OL, = OL,=x, OL—x Hence

ek mxl hxy+x,

\i'.+m E+1’

with simitar formulag®dr y and z. The ratio ljm =k is called the
position-ratio of, Pwith regard to P, and F,. The formulae are
sometxmes refcr}ﬁe}l to as ]oachjmsthal’q formuiae,

1-71. An@l;htff set of section-formulae is uscful, If

P,P=t.P, P,
we@e x=0u0, +#{xy—207)
N _ : y=n+t(y.—31)

O

_\N\ :zl'l't(z‘z_zl)

)

1-72. If two particles of masses m,, m, are placed at P; and P,
their centre of mass divides P, P, in the ratio s, : ml, henee the

coordinates of the centre of mass arc

My X+ Mgy

X= =
Hip -+ iy

etc.

This point is also called the mean point for the multiples
My My,
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1-73. Similarly, if three masses mi,, m,, m, are placed at three
points P, P,, P; the coordinates of the centre of mass are
Xy M X+ Xy
My -y

, ete,

By admitting ncgative masses any point in the plane can be

represented in this way. »

i-8. General cartesian coordinates.

In the general cartesian system the planes are not ncces?
sarily at right angles. The system will be determined by e,
angles between the coordinate-axes, viz. 2 YOZ =2, AJOXF;L,
LXOY =,

The direction-angles are then no longer convcmeﬁt But in
place of the direction-cosines we define the dzre;:wm ratios as
follows I=xfr, m=xy/r, n=2zr,

1-81. 'To find the radius-vector r we hp‘xf&\('?ig. 1)

2= OP?= ON*+ NP+ 20NNP cos NOZ.
Now the projection of ON on OZ is &qual to the sum of the
projections of OA7" and M'N, hen(’:e~

ON cos NOZ=0M cos S¥OZ + M'N cos ZOX

-—ycoaﬁl{-xcos,u
Also ON®=0 L’z—i-é N4 20L" \ L'Ncos XOY
=x +Q A 2xy cosv,

Hence
vR=aof + 32 ’-.l- 2% 4+ 232 cosA + 22% cos p + 2Xy COS V.

A . .
-1-82. Thed substituting from (1-8) we have
22 9% + 0% + 2mn cosA + 2nl cosp + 2lm cosv =1,
as the Iéentltv connecting the direction-ratios,

1\83 The square of the distance between two points (x;, 3y, 2;)
”mel (%2, ¥y, %} is found by substituting in (1-81) 2, — x;, for ¥, cte.

AV

1-84. The angle between two straight ilnes (4, 1y, n,) and
1y, mg, #,) 18 found as in 1+,
2L L+ Xy e+ myng) cosA
1/(22 o+ 2311y 1y COS XY (T2 + 25y 72, COSAY "
The numerator is the bilinear symmetrical expression associated
with the quadratic expressions which occur in the denominator,

cosfl=

Q"
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1-8. EXAMPLES.
1. Find the direction-angles of the lines joining the origin to
the following points: (i) [v/2, 1, 1], (i) [ — 1, 2, 2], (iii) [2, — 3, 6].
Ans. (i) [45°, 60° 607], (ii) {m—cos1}, cos 1§, cos™ %],
(il) fcos~* &, m—cos~1 §, cos™1 §].

2. A line makes angles 60° and 45° with the positive aves of »
and y respectively; what angle does it make with the positive
axis of z?

N ¢
A\
Ans. 60° or 120° "

O
3. Show that the point 3, - 1, 2] is the ccntréz’ef the sphere
which passes through the four points {2, 1, 4.] {),.‘I 1], [4. — 3. °]

[r, =3, 3], and find its radius.

Ans. ¥ =13. x \\ \

4. Find the centre and the radlus\of the sphere which passes
through the four points [— 2, €2 ’3] 1, =3, 3], [1, —=2, o}
fo, =6, —1].

Ans. [—1, —4, 1], r=',3.7;

5. A-regular tetrahedton is placed with a vertex at the origin
O, the altitude thfough O making equal angles with each of
the three rectﬂlp(guiar axes, and each of the edges through O
lying in thie_same plane with the altitude and the corre-

spondin 2 cqordmate -axis. Find the direction-cosines of the edges
through {

%4“3 4.,1 1] [1, 4, 1], [1, 1, 4 or [0, 1, 1}, [1, 0, 1}, [1, 1, ©).

. Find the actual dircction-cosines of the line joining the

’“\. X orlgm to the point [2u, 20, 2 + 2% — 1].
RS

\ 4 - Ans, Each divided by #2 + ¢ + 1.

&

7. Show that the four points [1, —1, —.1] f—1, 1, —1,

[—1, —1, 1), [1, 1, 1] form the vertices of a regular tetrahedron
and fmd th(, length of the edge

Ans. 24/2.

8. Show that [~3, —3, —3), [5, —1, -1, -1, 5, —1},

[-1, —1, 5] are the vertices of a regular tetrahedron “hose
centre is at the origin.
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9. Provethat[a, b, c], [c, a, 8], [B, ¢, 4], [d, d, d] are the vertices
of a regular tetrahedron with its centre at the origin when

a=12+3tt1, b=—t—1, c=—2—i+1, d=—~1—-1,
t being any para.meter. '

10. Show that the four points (2, g, 12], [1, 8, 8], [—2, 17, §],
[—1, 12, 12] are the vertices of a square. '

11, Show that the six points [o, 1, —1], [0, —1, 1], [1, 0, — 1], * L >
{1, —1, 0], [~1, 0 1], [T, 1, 0] form the vertices of a regulany
hexagon; and so also the points whose coordinates are [g, b j
and the permutations of these, where a, b, ¢ are in anthmc‘hcal

7 ‘.

progressmn N\

12. Show that the six points [ —1, 2, 2], [2, — Iy 2]\f2 2, —1],
[1, —2, —2], [~-2, 1, ~2], [—2, —2, 1] form }{}e*vertices of a
regular octahedron, N

13. Show that the six points [1, 5y 6], 4, 2, 6], [4, 5, 3],
I3, 1, 2], [0, 4, 2], [0, 1, 5] form thc vartlces of a regular octa-
hedron o0

. 14. OP, OQ are lines in thc planes of zx, xy, bisecting the
angles between the positive directions of the axes in these planes,
Prove that the angle PQQ 60°, Hence show that six regular
octahedra and elght\é\guﬁar tetrahedra will exactly fill up the
space about a poit,

15, Show thak the 12 puints [0, £ 1, 1], taking.all permuta-
tions, form the-vertices of a polyhedron bounded by 6 squarcs
and 8 eq\11§teral triangles.

16 §how that the 24 points [0, +a, £ 5], taking all per-

mutatlons, form the vertices of a polyhedron bounded by

\6 )squares and 8 he‘xagons, and that the hexagons are regular
if @=2b.

17. Show that the 24 points [+a, &, +5], taking all per-
mutations, form the vertices of a polyhedron bounded by 6
squares, 12 rectangles, and 8 equilateral triangles; and find the
relation between a and b If the rectangles are squares. (a>0.)

Auns. a*—z2ab—b=o,
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18. Show that the 48 points [+ 1, +{(1+4/2), +{1--24/2)],
where all permutations are taken, form the vertices of a poly-

hedron bounded by 6 regular octagens, 8 regular hexagons,
and 12 squares.

19. Show that if ¢*—ab—5%=0 the 12 points [o, *a, +4),
[£5,0, +a], [+a, +&, o] are vertices of a regular icosahedron,
and the 20 points fo, b, #(a+8)], [2(a+h), o, 5],
[£b, +(a+d), o], [ta, ta, +a] arc vertices of a wégular
dodecahedron. ¢ r\ >y

zo. If the position of a point P is determined with ) veference
to a rectangular coordinate-system by its rad:m—z ector p, the
angle ZOP=¢, and the angle XOL, or 9, w 1uc‘§}}~ the plane ZOP
makes with ZOX, show that \‘,

 x=psingcosf, y=psing siRE Z=p COSdh,
and dst=dp?+ pdp? + p¥ Sin® o b,

a1. If 4, B, C are three conseultm vertices of a parallelogram

show that the coordinates of thc “fourth vertex are

X= 953;!-7%0 Xp, etc.



CHAPTER 11
THE STRAIGHT LINE AND PLANE

2-1. Since a point in space requires three coordinates to fix
its position we say that it has thrce degrees of freedom. Similarly
in a plane a point has two degrees of freedom. More generally,
if it is confined to any surface it has two degrees of freedom, and
if it moves only on a line or curve it has one degree of freedop .
A point is deprived of one degree of frecdom when its COOl‘dln‘éteE
arc connected by apy relation. Ilence an equation in .y, %
represents a surface. Two such equations deprive the point of
two degrees of freedom and limit it to & curve, If tlg‘x:chquatlons
are given no freedom is left; the values of x, v, g caw’be found by
solving the equations and only a finite numbqn of positicns are
possible for the point. \\

2-11. The egunations of a straight l:lhe
Lct the straight line pass through»the point 4 = [x;, y1, £,] and
have direction-cosines (or ratigsh 1, 'm, u]. Then if P = [x, v, 3]
is any point on the line, and #¥F =7, we have
2-111. *= +Ir .
.i"’.g\;=y1+mr -
\ \ Z=a8+Lnr ‘
2112, EIimiz\aa}:iﬁg 7, we get the (two) equations
,\“ ’ X—%_ Y= _Z5
& e i m n
{2- IIZ)% adopted as the standard form for the equations of a
qtra,1ght line. (2'111) are called freedom-equations of the line in
~t¢ums of the parameter 1. [%1, Y1 #) is an arbttrary point of
¢ference on the line.
2.118. The coordinates of any point on the join of [x;, ¥, ]
and {x,, 3, %] can be written
x=on+ t{x— %)
Y=+t
=2+ %2},
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(see 1-71). These are freedom-equations in terms of the para-
meter £

2-12. Equation of a plane.

If P, P, P, are three points, the coordinates of any point on
the plane determined by them are (1-73)

HL Xy + M 00 + 1, X O\
x:#‘_._# 3_3’ th_
- Mg+ My A o
N\
Put #m,=t2m and m,=uSm, so that e\ e

2"
£
N

iy = Xn ity — iy = (1 — £ — 1) o

We have then '\\.

2121, &=ty (o — 30) £ (ot — S0
Y=t ()t (S
z=31+(22-—~1)t-|:,(:‘>,'}—zl)15
These are freedom-equations i’Ij,}joT;'ing two parameters 2 and #,
corresponding to the two dg:gréés of freedom in the plane.

2122, Tliminating ¢ adghu we get an equatton in &, y, &, which
is equivalent to

Q
’:\w}\? Xoxy X
B\ Y N Y ¥

P EB T 2

£/
e N ‘11 I 1

=0,

Theisq&z;tion is thus of the first degree in «x, v, . (2-122) is
alsq\tiie condition that the four points (%, % 2], [%1, 31, =)
R }, Yo Rl [%5; 35, 2] should be coplanar,
NS
m\~ W . .
\/ 2123, An equation of the first degree always represents a
plane. .

"The general equation of the first degree is
e -my tnz4p=o, _ veen(1)

The characteristic property of a plane is that if it contains two

pownts Py, P, of a strai ght line it contains all points of the straight

line. Letthen P, = (%1, 31, 2} and Py =[x, v, 2.1 be two points
2> Yoy Za P
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on the plane, Then
loy +myy +ns +p=0)
fxz+my2+nzg—i—p=0; )
Substituting in (1) the coordinates (1-71) of any point on the
line P, F,,
At my+nz+p=(Ix;+my,+nz+pH1—1t)

+ (Ixg+ mmyg + nzy+ P,
which vanishes by (2). The theorem is therefore proved. .
oA\

2-124. Orientation of a plane. O

The orientation or lic of a plane is determined by thesdn'ectlon
of any straight line perpendicular or normal to the plddé. A plane
may be determined by the direction [¢, 3, ] of it§abtmal and its
distance p from a fixed point, say the origin. Weshall call «, 3, y
the direction-angles, and their cosines the dircetion-cosines, of
the planc. Let NV be the foot of the normzﬁ\from € to the plane,

-and P = {x, v, 2} any point on the planc, Then the projcction of
OPis equal to the sum of the projections of OL', L'N, NP, hence
projecting on ON we have .;}jv

X Ccosa+ v C;SB +zcosy=p.
‘Thiswill be adopted as the\normai or canonical form for the equa-

tion of a plane. ThCﬁRCCldI property of this equation is that the
sum of the squares of the coefhicients of x, y, x is equal to unity.

2-125. Rapon of a plane in terms of intercepts on the
axes. 0
Let t{{\ plane cut the axes in A4, B, C; let 04 = a, OB =5,
OC = =\ these are the intercepts. Let P =[x, y, 2] be any point
g “the planc. Then the tetrahedron OARC is divided into three
\tetrahedra OABP,0BCP,OCAP. Thevolume of OABC = }abe,
that of OBCP=}tbex, ete. Ilence

Ebex+teay+Labz=}ale,

or ¥+J—I+fﬂ;:1.
o oa b

£

This equation has the same meaning when the axcs are oblique.
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%" angular components of a unit-vector. The su
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213. Intersection of two planes.

Two planes intersect in a straight line. lence the cquations
of a straight line may be given in the form

. Ix+my+us+ p=o ()
Fx+m'y+a's+p =0

If [y, w1, #] is any point on the line, it lics o both planes,
therefore N\
. fxl—i—myl—i-nzﬁ—p——-o:_‘ O (2)
Pxytm'y, +0'z, +p' =0 PR
hence, subtracting the corresponding cqllatifylia;}{f-‘{;;jl and {2)
Ux—a)+na(y—y) +nis _3’4\)? 0,
Ulx—m)+m' (y—v)+ H{RSk ) =0,
Solving for the ratios of x—x,, Y — 5 we have
X—x y—yl'\:’ 2—m

mu' —m'n nloSNHT b —Um"

The denominators are thf;r’é’i‘nre proportional to the divection-
cosines {or ratios) of thelline (1).

214, Note on yectors. -

A line of definiife length-and direction is a vector, Following
the usual coﬁv%rition We represent vectors in Clarendon (heavy)
type; the gatne symbol in ordin ary italic type is taken to represent
the ledgth’'of the vector. Thus v represents a vector whose length
is v AN parallel vectors of the same length are equivalent. if
{g\[x, ¥, &] is any point, the vector QP has x, v, & for its rect-

Langular components. The dircction-cosines [4, m, n] arc rect-

m of two vectors 1s
a vector determined by the triangle of vectors”, viz. if the two
vectors are placed consecutively as 4B and BC their sum

4B + BC = AC. Subtraction is the invers
negative vector is equivalent to a positive
opposite sense. Addition and subtraction
commutative,

"The multiplication of vectors may be defined in v
and two distinct kinds of products of v

e of addition, and a
vector taken in the
are associative and

arious ways,
ectors are found to he of
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special importance. If [x,, 3y, 21] and [xg, ¥, 2] are the rect-
angular components of two vectors vy, v,, the sum

KXzt Vi Ve + 513,

is called their scalar product and is written

_ Ui V=K% Ve + 2%
A common example of this is the work done by a force F.
1f X, Y, Z are the rectangular components of the force, and,
%, ¥, ¥ those of the disphccment s of its point of application, the
work done by the force is represented by W= Xx+ Yy-;-Z% s,
If 4 is the anple between the line of action of the force and. #he
direction of the displacement, W="Fscosf=F.s. Thes Gcalar
product of two unit vectors [/, m, »] and [Z, ', n]qs\

&+ mm’ 4’

and vanishes when the vectors are at right anpiés.

The vector-pr oduct of two vectors vy"[xl, ¥, %] and
v,=[Xs, Ve, 2] 18 a vector whose comipbnents are y,z, — .2,
1%y~ 2%, % Yo — %%y, and which is theréfore ¥y,
perpendicular to the two vectors. I,tmdenoted
by vy % v,. Evidently v, X v,= <%, ¥ v;,s0 that

vector multiplication is not “tommutative, \\
'T'he direction of the vectgf-product is defined ~ ~
as in the figure. F r\éxample, in a right- ‘:E v,
handed coordinatgssystem if X and ¥ are Fig. 3

vectors along tlLe pﬁSItI\«C axes of x and y, Xx ¥ is along the
positive axis ofx.

2-2. &;g;es
Theyangle between two planes is equal to the angle between
j;l;mi};ﬁormals. The angle between the two planes
\\: et my+uz+p=o,
Istm'y+nwz+p =0,
(the axes being rectangular) is therefore given by
cosf =21/ (ZPZL),
The two planes are orthogonal if Zil'=o, and parallel if

’

Lrmon=1 0%,



™
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The angle between 2 straight line and a planc ix equal to the
complement of the angle between the straight line and the .
normal. Hence if & is the angle between the plunc

Ix+my+nz+p=o,
and the straight line

¥
¥x—x" y—y =—=z

! mwt’ #n _
sinff =Xl (ZEE1T. O\

The straight line is parallel to the planc if X/ =0 nj]\dsperpen-
dicular if limin=10m 1o,

N

\

2:31. Intersection of a straight line and a plane.

Let the equation of the plane be R4
' Ix+myt+nz+p=0v ... (1)
and the freedom-equations of the lingw)
r=x J.:'J,Vi\ ;i
p=ylPmt. (2)

K

A
=L 't
oY, = in the cquation of the plane, we

Then substituting for
have N
HI A+ nn') + I’ Ly’ 4 nz’ +p=0. ... (3)
"This gives i gg:\:réral one value for ¢, and this value substituted
in (2) givesthe coordinates of a single point,
I, hf){wévér, Zll'=0, (3) cannot be satisfied unless
AN & my +nz’ +p=0. ... (4)
Q}hls case the line is parallel to the plane and has the point

Q' ', 2'] common with the plane, hence it lies entirely in the
.* plane. :

If %/ = o, while (4) is not satisfied, the line is paralle] to the
plane and has no peint in commeon with it. (This is true also if

‘the axes are oblique.)

2-32. Points, lines, and plane at infinity.

Two straight lines in the same plane either intersect or are
parallel. When they intersect they have a common point, and
this point belongs to each of a single infinity of lines forming a
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pencil ; when they are parallel they have a common direction, and
this direction belongs to a single infinity of lines all mutually
parallel. Two distinct points determine a unique line, the line
which possesses the two points. A point and a direction also de-
termine a unigue line, the line which possesses the given point
and the given direction.

In three dimensions a point is common to a doubly infinite
system of lines forming a bundle; a direction 1s common to a

doubly infinite system of lines all mutually parallel. Two planes .
cither intersect or are parallel. When they intersect they have a* ),

common line, their line of intersection, and this line belongs~t0
each of a single infinity of planes forming a peneil; when they
are parallel they have a common orientation, and this ({mﬂtatlon
‘belongs to a single infinity of planes all mutually parallel. A
straight line possesses a single infinity of points ahd one direc-
tion; a plane possesses a double infinity of poinfs and a single
infinity of directions, the directions of al thghnes in the plane.
If a line and a plane intersect they have & ¢hmmon point; if they
are parallel they have a common d1ref:t1~on

Three distinet points determin& unique plane, the plane
which possesses the three pointS*A plane is also uniquely de-
termined by two given points@nd a given direction, or by a point
and a straight line, or by a/point and an orientation, or by a given
point and two given difgetions. T'wo dircctions alone determine
an orientation, sincg(@)system of parallel planes can be drawn all
parallel to two given lines.

Thus in de’t&rmmmg lines and planes, we may In certain
cases replage points and lines by directions and orientations re-
qpectwely&?hls connection is emphasised by using the suggestive
termat {Point at infinity " for “direction” and “line at infinity”

T\ horientation”.

line possesses one point at infinity; a plane possesses one
line at infinity but a sitigle infinity of points at infinity. Two
points at infinity determine uniquely 2 line at infinity, and we say
that the points at infinity on a plane lie on the line at infinity of
this plane. Two lines at infinity determine uniquely a point at
infinity (the direction of the line of intersection of two planes
with the given orientations). Since two lines which determine a

BAG ]

QY
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point also determine a plane, we say that two lines at infinity,
a, b, determine a “plane at infinity” «. A third Hnw ot infinity ¢
determines a point at infinity with cach of the llies at infinity
4, b, and we conclude that ¢ also belongs to the plaric at infinity .

- Hence there is just one plane at inlinity, the asscmiblage of all

points at infinity and all lines at infinity,

2:33. Homogeneous cartesian coordinates, A point at in-
finity, or direction, is represented by the ratios of tlielthree
direction-cosines, but it is convenient to modify the céordinate-
system to admit of the representation of ordinarg™oinits and
points at infinity equally. This is done by the, iftroduction of
homaogeneous cartesian coordinates. 1f (X, ¥, ’Z’]Taré {he ordinary
nen-homogeneous coordinates (rectangulardr oblique), let

X=zxfw, Y=yfw, Z&bluw,
then [x, ¥, %, =] are called the Migmogeneous cartesian co-
ordinates. If w # o every set of wiliics of «, ¥, 2, & uniquely re-
presents a point, and for everf\yalue of %, not zero, the values -
kx, ky, kz, ke represent the'sarne point. '

2.34, The-equations,qf:tife straight line through [x', 3, =/, @'], -

with direction-ratios [£%n, #], become

WESYw w'y—y'w ws—z'w
2N T Y TYW WA

I m 7 !

and freedom-equations are obtained by equating each of these
ratios to &y

w'a=x'zwt It
"\'\ o wy=y'w+mt,
AN\4 w'r=2"wtnt,
ere w may have any value, Introducing another parameter #,
writing pw=w"«, and replacing ¢ by w't/p, the equations become -
px =x"u+ It
Py =3'u-+mi,
Cpr=x'utnt,
pe=1t,
where p is a factor of proportionality. These are hémogeneous
frcedon.l-equations in terms of two homogeneous parameters.
Any point on the line is determined by the ratio #/u,
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When w = o the cartesian coordinates x/w, etc., in general all
become infinite, and we get the point at infinity on the line. The
homogeneous coordinates are [/, m, #, 0o]. These are therefore
the coordinates of the point at infinity in the direction [/, @, #).

‘I'he equations of the straight line through the points
[%1, ¥y, 21, @y and [x, ¥y, 2, @,] are

WE—wX WY —WY W W

T K — Wyky B — eV W Bp— ol

Equate each of these to ufp, and write pw=w,-+ayu, and we~

get as the homogeneous freedom-equations . QO
px =xyF + X1, A
'\‘\f
oy =yt + 3.4, O

% =2t +2u \

P 1 Atks \\“

pw=uh -+, '\\

Eliminating p, ¢, and u between thegegquations, taken three

at a time, we obtain four equations, ‘of,Which only two are in-

dependent. These may.be represe.m’ed by the notation '

‘|x ¥ ,:3'. @ . =0,

Cay ANEL W

5 P T o

which means that ach of the determinants of the third order
formed from this‘ﬁratrit vanishes,

3

"Ex. Show bk{at the ratio in which [«, 3, &, @] divides the join of
[%y, 31, N\wq Sand [xy, Vg, &5, Wy] 18 20,2070 2,

2 3&1\Vlatrlccs.

‘We shall frequently have occasion to use the matrix notation.
AJmatrix is a set of numbers arranged in s rows and = columns,
and is denoted by

L (11,;2 e Bp

Any determinant which is formed by striking out m — 7 rows
and n — 7 columns is called a determinant of the matrix, If all

2-2
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the determinants of order  + 1 vanish, but at least one of the
determinants of order  does not vanish, the matrix is said to be
of rank r.

The condition that three points [x;, v,, %, 2], [ 3y Vo, B, 1),
[, ¥4, %3, t0;] should be collinear can be expressed by saying
that the matrix

XM Eowy

Yo Yo Ba Wy O
_ X3 Ys Ry Wy | L\
is of rank 2. If this matrix is of rank 1 the thées* points all
coincide, _ N

2-85. The equation of a plane in homogeiitous coordinates
becomes N

lx+my+nz+pzz<=‘o..

The condition that four points [’ 31; » By Wy, [Koy Vo, o, Wol
(%3, ¥, 3, w0s], [%5, ¥4, 24, 4] 'slzél;hd be coplanar is

‘ ¥ }fg,:',; 51 # |=09,

; xg}i}'zu Ry Wy

: 5%. Y3 Ry oy |

A% %, Vs Ry g | -

or that this mattix is of rank 3. I the matrix is of rank 2 the
four points,are.tollinear; if of rank 1, the four points coincide.

2'351:'\“';1‘1'16 freedom-equations of the plane through three
pom}{{xh w5 [, o]y [%, .. ] are
ol _

~\ PY =t +yu + v,
\"\, PE=2t +3u + 2,

pR=w f+wu-+ wez.
2-88. Consider the intersection of the line
px =x"ud- I,
PY =¥"u+mi,
PR =Z"u-tnt,

!
P =y,
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which passes through the point [x, ', &, 2] and has direction-
ratios [/, m, n], with the plane
Us+m'y+n'z+pw=o
Substituting for x, y, 2, w in terms of ¢, # we have
(I tmm' + oY+ (' + 'y 40’2 +p' o Yyu=o0. ..{1)

When the line is parallel to the plane, 2 =0. Then either
Ix' +m’y’ +#'2" 4 p'w’' =0, which expresses that the point
{2, ', 27, @'] lies in the plane and then the whole Jine lies in the

plane, since (1} is then true for all values of # and u; op- Ql%e
u=0, and we get as the coordinates of the point of 1nteg§ebt10n

x=Jt, y=mi, z=nt, w=o0, ‘

. "\
or, since only the ratics are significant, [/, m, 2,50}, These are
thus the homogeneous coordinates of the poing atinfinity on the
line whose direction-ratios are [, m, ). 0>

The coordinates of any point at infihity satisfy the equation
@ = 0. Since this is an equation of thefirst degree we consider
that it represents a plane which we ‘eall the plane at infinity.

The equations of the paralle] planea

N

Ex+my+ﬂz+pw—-o,
lxi+}?qy+nz+p W=0

are satisfied sunult\qeously only if w=o0, ie. by the co-
ordinates of pojats’at infinity. They have then in common a
straight line afwifinity. On every plane {except the plane at in-
finity) ther{:'\s one straight line at infinity ; the equations of the
Stl‘algh[illﬂe at mﬁmty on the plane lx +my 4+ nz + pw =0

bmng .
~\. l'r:~|-my+n~= 1}_

’"\
V w=0!
2-41. Intérsection of three planes, -

Three planes
Lax+my+mz+pw=0,

lyx + Moy + 1% +Pzﬂf‘ 0,
lox gy +n,2 +p3wﬁ
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intersect in a point whose coordinates satisfyv the three cquations
simultaneously. These coordinates are therefore viven by

X -~y - L =
ORI hom pyoy ‘ Loy Py _' h ooy oy |
By My Py ly ny py bomy p : ' Ly my my
My fy Py bng py 1 0 Dyomy py o my iy

which may also be expressed as
[ v & w]=[4 m u p],

by my ny pyo

N

O
v
i my wy py A

Jal §
R O .
i.e. %, 9, 2, w are proportional to the detern}mﬁntg of the matrix
taken with the proper signs. If the magsix on the right is of
rank 2 the three plancs have a comman line; if of rank 1 they

coincide. If the matrix N

L my Sy
) 3
O N

»
s W

J{.”}‘i" Hlg M,
is of rank z the point ofuRtersection is at infinity, and the three _
planes are parallel toghe line; if of rank 1 they are mutually

parallel.
The conditig{i’;hat four planes should have a point in commen .
is that the matrix
O : hom omopy
P\ / b my m P2
. "\x:\' ' Ly my Hy - Py
%"' . L omy on, p,

‘w':;\shou]d be of rank 3, i.c. the determinant vanishes, If the matrix
(y" -is of rank 2 the

~O planes have a line in common; if of rank 1 they
\ V), ali coincide. '

2-42. Pencil of i:lanes.

If MShatmy+nz+p,=o,

W=hx+my+nz +p,=a
represent two planes, the equation

U 4 Auy = o
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is of the first degree, thercfore it represents a plane. Also it is
satisfied if s, = 0 and #, = o, i.e. by the coordinates of any point
on the line common to u; and #,. Hence it represents a plane
through the line of intersection of #; and u,.

All the plancs through a given line form a sheaf or axial pencil
of planes; the line is called the awis.

Similarly, if uy, i, #, are three planes,

Hy -+ Ay T g =0
represents a planc through their common point. By giving all

values to A and p we obtain a doubly infinite system of planes \
through a point, forming a bundle. O

2.43. Condition that three lines through the origin sk.atzif}f‘h'e in

ane plane. m'\‘\"
Let the direction-ratios of the threc lines be f{I ﬂ%l, 7], ete.,
and let Ix+mytnz \J

be the equation of the plane containing thc ]}nes Then since the
point at infinity on cach line lies in thi§ plane,

Uy -+ mm + ?:wlzo,

I, +mm3+’m£2—o,

l13+mﬁ?3-l~ nn3~0.
Hence eliminating /, ”, n,\

31' my |

.‘\' I, my ng
This is aISC\tEe condition that three lines should be parallel to
one plap@yer that the three points at infinity [, my, ny, 0}, etc,
should;.jbe collinear.

"\2;14 Intersection of two straight lines.

Since a straight line is the intersection of two planes, and four
planes do not in general have a point in common, two straight
lines do not in general intersect. In this general case they are
sald to be skew.

Condition that two straight lines should intersect.

Let [, 1, %] and [%,, ¥2, 2] be points of reference on the two
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 lines, [4;, m,, ;] and [k, m,, 5,] their dircction-ratios, then the
freedom-equations are

x=x+44, x=a,+ 11,
y=y+mi, y=1y,+ut,,
Z=2+ml, E=3 11,

If i, #, are the respective parameters of the point of intersection,
we have, cquating the coordinates,

N
athiy =+l N
Y Em =y, tnyt,, \ \)
2yl =2+l W

Between these three equations we can eliminatedy, 7 and e get
# ~\.’
M=% L L =@M
P Y. By i i

L2y — 2 my fa%4

\Y;

This expresses that the two lines afida line which cuts both Tines
are all parallel to onc plane. Writing the condition in the form

Xy ﬂ‘e}t‘gln 32
Jinye iy H

ARy g Wy Wy

T.O,

NPT o1 0 o

it expresses thdhthe two points [x;, 3, 7, 1], [#q, ¥y, %, 7] and
the two pointsat infinity en the lines, [£,, m,, ,, o), [fas g, 125, 0],
are coplansr.

g, N/

2-,5.{'Number of data which determine a peint, a plane, and a

gyiai‘g“ht line.

“\,f:'z A peint is determined by three data, its three coordinates.
'...\ { 7

Q

A plane is determined by a single equation of the first degree,
which contains four constants, Only the ratios of these constants,
however, are significant, hence a plane is determined by three
data. .

A straight line is determined by two points, and each point
requires three data to fix it; hence we have six data. But each
point has one degree of freedom on the line; hence the number
of necessary data reduces to. Jour. Otherwise, the line is de-
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termined by the two points in which it cuts two of the co-
ordinate-planes, and each of these points requires two data to
fix it, hence again the line requires four data.

The number of constants required to fix a figure is called its
constant-number. Thus the constant-number of 2 point or a plane
is 3, while the constant-number of a straight line is 4. In plane
geometry the constant-number of a circle is 3, and of a conic 5.

2-51. Coordinates of a plane,

'T'he coordinates of a figure are any sct of independent npums{,
bers serving to fix the figure. In the simplest casc the number(of
coordinates is equal to the constant-number of the flgure but
sometimes it is convenient to employ a greater aumbéRyof co-
cordinates connected by certain relations. Such coord.l\lat(:b are
said to be superabundant. In choosing coordinates for a figure
two conditions arc desirable: 7o \d

(1) to each figure there shouid corrcsmﬁd a unique set of

values of the coordinates, and e\
{2) to each set of values of the coordigates there should corre-
spond a unique figure, oo
i.e. between the figurcs and the sats of values of the coordinates
there should exist a (1, 1} or biunivecal correspondence,

In the case of the planc thsse conditions are satisfied if we take
as coordinates the ratio tiie coefhcients in the equation of the
plane. The four coefficie ts [{, m, u, p] may then be called the
homogenesus coordmateb of the plae.

As a set of onahomogeneous coordinates we may take the
three ratios Jigfn/p, n/p, provided that p s o, i.e. provided that
the plane- ¢ts not pass through the origin. 'T'he geometrical
meanmg \Of these coordinates is readily obtained. They are in
fact LQual to the reciprocals of the intercepts which the plane
Iﬁ\kes on the coordinate-axes, each with reversed sign.

An equation in point-coordinates represents a two-dimensional
locus of points or a surface; in particular an equation of the first
degree represents a plane, An equation in planc-coordinates re-
presents a two-dimensional assemblage of planes. (We shall see
later that such an assemblage may envelop either a surface or a
curve.)
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The equation Ix+my+nz+pr=o

represents the condition that the point [¥, ¥, & ! s on the
plane [}, m, n, p]. If I, m, n, p are fixed, while x, y, =, @ are
variable, this equation represents a locus of points, in particular
aplane. If x, y, 2, w are fixed, while /, m, n, p vary, it répresents
the assemblage of planes which pass through the fixed point
(%, y, #, @], i.e. it represents a bundle of planes.

2-511. We may here explain a notation which 1t will 1 agipe-
times be convenient to use. Instead of using the letters \:,j}{z z, W
for the coordinates of a point, and Z, m, n, p for thosgy m Jplane,
we may economise letters by representing a poink &y the co-
ordinates %y, %;, %, x5, and a plane by &, & /6n £, llere %,
replaces w, so that x, = o represents the plade at infinity, and
& =0 represents the origin (bundle of plints through €}, To
distinguish two points we may usc dlff;}sbnt letters, e.g. the point
[¥ey %1, V2, ¥3]. 'The point whose co(}{dmatcs are [Xg, %y, Xy, ¥5)
may be referred to simply as th®point (x), and similarly the
plane (€) for the plane whose»coordmates are [&,, &, &, &) or
whose equation is R\

Eooty 2 gﬁél. +&x + Gxy =0

252, Cm:nrdil:late'g~ of a line,

A set of foug@rordmatcs for a line may be found as follows.

Draw a plangthtough the line perpendicular to the planc of %2,
This cuts the plane of xz in a line

,'\~ : y=0, x=Az+p,
aIRLx Az+p is the equation of this plane. Similarly the plane

s¥hich passes through the line and is perpenchcular to the plane
vof yz is of the form

Yy=prtq.
The straight line is then represented by the two equations
Cx=Az 4+ p“[
y=ps+qf’
and the four numbers A, g, p, g may be taken as the coordinates

of the line. They satisfy the condltmns of 2-5x, but they are
lacking in symmetry
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A more symmctrical set of coordinates for a line can be ob-
tained: as follows. Using the notation of 2-511 the line is de-
termined either by two points (x), (), or by two planes (£), (3).
In each case we have 8 constants which reduce to 6, since only
the ratios of each set of 4 are significant. The straight line may
be represented by either of the two matrices

[:xn Xy Xa x3j or |i§u_§1 & g';:|
WYL Ve Y ™o e el

and is, as we shall prove, completely determined by the ratios Qf\ )

the second-order determinants of either matrix. £\
N
Let Xy —x3=py; and £ —Emy=my, N
" so that pu=—p; and  wy=—wy. \\

'The straight line is completely determined bysthedwo points
(¥} and (y), and their coordinates then determing ,,. The linc
is also determined by any two points on \e /Same range, say
(x+Ay) and (x+py). Now N

(o ) 365+ pevy) — (%Hy;)(xsﬂeys) (u X eis =63
Hence the ratios of p,, are the S"lmf! whatever pair of points are
chosen on the line. Similarly ue may prove that the ratios of
m;; are the same whatever pair of planes are chosen from the
pencil whose axis is the gi\)en line.

2:521. The six py, a}&\onnected by an 1dent1cal homogencous
relation. We have, 1rLfact

Pupat & [*‘.31 FpnbPe= 2 (x¥i— %Y (% Ve —X:Vs)

1,8, 3

:-\’-'1 xz x3 =qQ,

A\
NS NN R N

at & Xy X Xy Xy X
O |y e s Yr ¥ N
‘apg similarly Wy Doy + Ty Ty + Wy Ty = O,

2:522, We can now prove that the ratios of any six numbers
pes which satisfy the identical relation uniquely determine a line,
such that if (¥} and (y) are two points on the line

PPia= %Y — % Vis
where p is a factor of proportionality. Choose (x) as the point at
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infinity on the line, so that x, = o, then the ratios of x|, =y, x, are
determined by the equations
PP{U = x:‘}’o '

i.e. the direction-cosines of the lin¢ are [Py, Pons Pan]- Similarly
the coordinates of the point of intersection with the plune x4y = 0
are [Py, 0, Par, Pasl; €tc.

2-523, The two sets of line-coordinates p,; and m,; are ¢On-
nected by simple equations. Bince (x) and {y) are two pumts on .
the line, and (£) and (%) are two planes through the ling, “eath of
these points lies on each of the planes. Ilence ™

Téx=o0, Tfy=o0, Snx=o0, Zny':joim"
Eliminate £, between the first two equations"‘aklzi we get
E1Pro+Eapan+E 3?-"3:0 N
Similarly, eliminating 7, between ‘ghc}:\l:aist two, we get
Ml t "?2]?29 il;ﬂépsu =o.
Hence PoiPoo: Ps‘o’ 2, W1 & U
and in a similar way we pmvc the complete set of relations
Pro i Pu P 'PS{'Pa FPrp= Tyt Ty Oy 1T | Wiy Ty

These supf;ral@dant coordinates are called the Pliicker co-
ordinates of dline,
I {2, n} dre the direction-cosines of the line, and [«”, ¥/, 2]

any poth on it, the Inatrix which defines the coordinates of the
line s, &

’ f r

- . N X
.\'\\ [7 4 'z I:|!
A\ _ I m n o

and Pa=L pp=m, py=n, Peu=mny' —mz’, etc. We shall some-

times use the notation [/, m, n; I', ', n ] for the coordinates of a

line whether !, m, # are simply thc direction-cosines or the more
general coordinates. 'The identical relation is then

I+ mm’ + ' =o.

In repres?,n_ting a line by its coordinates we shall adhere to
the §onvent10nal order [P, poas Poai Pas» Pars Pro]. Thus

[23 3 6; 3 = 6, 2} .
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represents @ line with direction-cosines [2, 3, 6] and passing
through the point fo, —1, —3]; while the line [3, — 6, 2; 2, 3, 6]
has direction-cosines [3, —6, 2] and passes through the point
[0, —2, I].

Ex. 1. Prove that the coordmates of the point of intersection of
the line () with the plane (£) arc

£1P10+ Sabrt EsPuos
Eobu + &P +€Pn,
£+ Epre +£3P52, L\
oPoa+é1P1st Eabess O )

and that if the line lies in the plane these four expressions akl vamsh
Ex. 2. Prove that the line-coordinates of the plane\wntalnmg
the line {w) and the point (x) are )
&)y Wy + X5 We -+ xgwﬂ? 3 \\:
Xy + X5+ Ky
XoThyo T Xy PNy,
KTy + X gy + .1'2\1535 Y ¥

and that if these four exprcsswns %’Iamsh the point {x) lies on the

»

line (@). N\
Ex. 3. Prove that the ccm"ditions that the line {p) should pass
through the point (x) are gty two of the equations
By +a s+ 005 =0,

and that the line (p) «¢hould lie in the plane (£) are any two of the
equations A\
N Emptimyt 6D=0,

. Ny .
where :,]&»arc given any three of the values o, 1, 2, 3.
2 S

2-524' Condition that two lines (p), (g) should intersect,
Le‘t the lines be determined by the pairs of pomts (x), {(x") and

})) (v}, so that p,;=x.2—2;:%", g5;=¥:" —v:% . The con-
dition required is that the four points should be coplanar, i.e.

. xu Xy xz- .'X‘3 =
A A A N |

Yo Y1 Y2 M|

¥ Vi ¥ ¥
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'Expanding this determinant we find the condition in the form

PoantPadut Podnt Puget Posit Profu=o0.
The condition is linear and homogencous in the coordinates of
each of the lines. The left-hand side of the equation is the bi-
linear symmetrical expression which reduces to the identity

Poubutpops -+ Pupra=0

when the two lines coincide. e

2-6, Imaginary elements. O\

In applying algebra to geometry we must frequently deal with
equations having imaginary roots, The number-system in algebra
having been extended to include complex ndmabers, an inter-
pretation of the corresponding elements in gedmetry is required.
A purely geometrical treatment of imagigaty elements was given
by YON STAUDT on the basis of elliptiginvolutions, but we shall
simply define an imaginary point asthe thing which corresponds
to a set of values of the coordinatés when some of them at least
are complex numbers, The two sets of values

[x-£2x5 Y+, z+12]
and “[x:-%fx’, y=5y', z—2%']
represent ¢ conjugate.imaginary points”, and the two equations

Ifal Y+ ... =0, (I=il')x+ ... =0

represent “@anjugate imaginary planes”, T'he line joining con-
Jugate wn@gifary points, and the line of intersection of con-
jugatfe,:'{maginary planes, are real. Through an imaginary point
there\3s just one real line, the line joining the point to its

gojligate; and on an imaginary plane there is just one real line,

Aothe line of intersection with the conjugate plane,
\"
N\ \ N 4

QO

A line is determined either by two points or by two plancs,
and we obtain the corresponding Pliicker coordinates. In order
that the line should be real the ratios of its Pliicker coordinates
must be all real. In general the line (I} determined by two
imaginary points is imaginary, and then the line (l’j determined
by the two corresponding conjugate points is the conjugate

imaginary. Two sorts of Imaginary lines arise, according as the
line does or does not meet jts conjugate, '
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if 1is of the first speciés it meets its conjugate ', Then we have
one real point on [ and one real plane through

if { is of the second species it does not meet its conjugate. It
contains no real points, and lies in no real plane.

As an example let 4, A" (Fig. 4) be two conjugate imaginary
points, and B, C two real points, such that the real Hnes BC and
A4’ do not intersect. Then AC, A'C and 4B, A'B are pairs of
conjugate imaginary lines of the first species. The planes AA4'B . £\
and AA'C are real, while 48C and 4’BC are conjugate 1m.,

1gnﬂrleq

Iig, 4 \’:" Fig. 5
If 4, 4"and B, B' (Fig. b)drc,two pdll"a of conjugate imaginary
points such that the real linessd A" and BB’ do not intersect, then
AR, A'B and 48, A'B' 1::5pa1rs of conjugate imaginary lines of
the second specmq L{e\pianw AA'B and A4A'B’, BB'4 and
BR'A’ are pairs of conjug'lte imaginaries,

271. Distance ‘fmm a point to a plane.
Let P =[50 \’" =] be the given point and -
“Q“ xcoso+ycos f4zcosy=p

the giy et plane so that the dlrectlon-anglce of the normal are
%\,)\ ¥ and p is its distance from the origin. Let d be the distance
of ¥ from the plane. The projection of OP upon the normal is
p:-d according as Pis on the opposite side of the plane from O
or on the same side. But this is equal to the sum of the projec-
tions of the coordinates of P. Hence

prd=x"cosz+y cosB+2 cosy,
ie. td=x'cosa+y cosf+2 cosy—p,
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If the equation of the plane is
Ix+my+nz+p=o,
I +my +nz' 4 p

then . It B mrny

I+

2-72. Distance of a point from a straight line.
Let the equations of the line be
' #—X_y-V 2-Z2 O
o { m 7 e
and the given point P=[¥, ¥, 2']. NN
Let 4d=[X, 7, 7).
Then if p is the length of the

perpendicular PJ, and 4P= 7,
and L PAN=9,

N Fige
and =2z — X)2 \ '
Also, projecting AP on AN » We :h:fve

r cosf=Zi(¥ — X)(Zr)~+,

From these three equations, by eliminating r and 6, we can
obtain p, X

P=rsing,

“‘{
Ex. Prove that ,{ )

N\ : ‘
SPSE (3 - Z) (- Y,
2.73. Shéiétést distance between two straight lines.
Let \‘@e“fr&dom-equations of the two lines be
§ =X+t ete., -and x=X"4I't', etc.
.j"I:'ake 2 point P=[x, v, 7] on the former, and P'= [x, 3, 2] on
~(Othe latter, We have then to find P and P’ so that PP’ may be a
./ minimum, :
We have PP’2=E{.(X+JE) —{X'+reye _
The conditions for 2 minimum are found by differentiating
separately with regard to £ ang ¥ and equating to zero. Fence
U )~ (X418 =o,
X+ - (X + U'th=o,
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Butif A, 4, v are the direction-cosines of PP’ these equations are
equivalent to '

=0, V=0,
Hence PP 1s perpendicular to both lines.

Let MM’, =d, be the common
perpendicular, and let @ be its in-
clination to 4A4’. The direction-
cosines [A, u, v] of MM are found
from the equations o

TiA=0, Bl'A=o,
hence Aiprv=mn' —m'n:nl' —n'l: ' — I'm, Y O
Then, d being the projection of A4’ on MM,
d=ZMX - X33, A\

'The equations of the common perpendicular ﬂfﬂi” are most
symmetrically expressed by forming the eqgiations of the two
planes AMM’ and AWM. 'The plane AWM’ is cxpresscd as
the planc through 4 which is paralleNt6 the two dircctions
[{ym, n]and [A, g, v], Tts direction—goﬁné@ are therefore mv — ny,
cte. Similarly for the plane 4" MAE"" Lastly, the coordinates of
M’ and M are found by the intersection of the plane AMM with
the line 4’3", and the plane A"MM’ with the line 4M,

2731, Let [l m, n ql'l} m', 1] be the actual values of the
direction-cosines apd“Mthe angle between the two lines, then
since sin® ¢ = X(mf > m'n)?, we have, defining the sign con-
ventionally, N/

pdsini=3(X — XY (mn' —m'n)

\O~ - X-x 7 .
o Y-V m w

’"\\ oo/ .
“THis can be expressed in terms of the coordinates of the two
lines. We have
—dsini=3(nY —mZ)+ WY —m'2")
=2 (P'orpes + Poy D ms)

The expression d sin 7 is called the moment of the two lines. Tts
sign depends on the directions of the two lines. To bring the one
SAQ 3
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line into coincidence with the other, with the proper scrse, we
may combine a translation through 4 with a rotation through 4
if these displacements are effected simultancously we have a
screwing motion, and the moment
is positive if, when 7 < 180°, the

screw is right-handed. "Thus if a

13

[Jf

along the positive x-axis, a’ paraliel /_/ ‘- T>loaog
to the positive y-axis, and d= + 1 d N\
along the z-axis, the coordinates of A

. a 001 NSy,
the two lincs are {1, 0, 0; o, 0, 0] . Lo
and. [o, 1, 6; ~ 1, 0, 0] and their ¥ {roco) O
moment = + 1. The vanishing of ' %

the moment is the condition that the two 1 pegshould intersect
igéQshoy

or be parallel.

2:8. Volume of tetrahedron,

N

2%
A

Consider the tetrahedron with\one vertex at the origin, and
the other vertices numbered 15253, so that the coordinates of the

vertices are [x;, v, z,], etciN”

The volume = 1 basg::.}t'«ﬂtitudc. Take the base as the plane

(123). Its equation js ™"

.,im.’\i X ¥ =

X\ X oW oH

\) [xs Y2 3y
</ ;
¢ X Vs 2y

Now, the coeflicient of # is

I3 =
Yo %
Yz

This is equal to twice the area of the r

with coordinates in that plane (y,
triangle is the projection of the
Similarly for the coefficients of

equation by (123) it reduces to the normal

I .
I
I

1 21): (yz,
triangle
y and =z,

iangle in the plane of yz

Za), (s, %). But this
(123}, =(123) cos .
Hence dividing the
form

mcosm+ycosﬁ+zcosy+p=o,
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Therefore px{1z3)=0V="% vy = |.
] X Ve 32.!
P X Vs &
For a general tetrahedron with vertices 1, z, 3, 4, if we take

new axes parallel to the old through the vertex 1, the relative
coordinates of the vertices are x, — &, etc., and

OV =l ay—m y—y -3z | = xy=m1 .
Kg=Xy Yy N 3 Xy Yp Ry I
bag—ay - 2 — & | %3 ¥3 %5 1 | \
1| B AT | \
. . O
2-81. Corresponding to the expression AN
&/
$ri7esin (B, —8) = fryrysing . ’:\

for the area of a triangle we have an expression fQ,the volume of
a tetrahedron in terms of the lengths of three,\c@’oerminous edges

and the angles between them., O

NN

Thus 6 Vol. (o123) = 7,7, | cos @, \e0s fy cos y,

ggsib?g cos 3, cos y,
. y;’éﬁs % COS Py COS 7y ‘
‘The square of this determinaqt 15
1 :\~Sc\os(12) cos (13) ‘

7

! cos (1) 1 cos (23) |
P edsi3n) cos(32) T |
= 1 — 3Os? (23) + 2 cos (23) cos (31) cos {12).

The square l@Q\t “of this expression 1s sometimes called the sine

of the soL@iaﬁglg of the tetrahedrt?n.

2-820An expression for the volume of a tetrahedron can also
' be@b}ained in terms of the edges r,,. Multiply together the
two’ determinants :

V=jxynzmi1oi, ~6V="a 3 Z 01 |
Xg Yy 2 1 O |x2y32201!
X Yz & 10 ¥y ¥y &y 0 1
Xy Yy & 10 Xq Yy Z; O
0 00 01 |0 O 0 10
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by rows. In the diagonal we get the terms %, ..., r,%, o, and in
the place (z, 7) we have
Dxas =3P tat—ryh (G 7=1,2,3,4).

The last row and the last column are cach 1, 1, 1, 1, 0. Now
multiply the last row by 47,2 and subtract from the ith, and the
last column by 7% and subtract from the éth. Finally, taking
6ut the factors — % we get

8 x 36k 2= o P N
ETRCTE LR (PO SN
BRSPS .I o
I fn® TR® Ty o 3’1«
. I I 1"\&6

This'is the three-dimensional analogueofvHeron's formula for
the area of a triangle AL :

o\
A2=s(5—a)(s-b)(;—-cf)-7—.\j¢‘§%!0 22 B

£ 0 a1

AN ‘52 a o 1
™y

&N A S G o!

\

Ex. 1. If the line-coordinates (p) are the actual values of the
determinants of the/matrix

¢ \J \
A\ |jxl MnoF 1:| »
O\ X2 Yo & I
where i, 2], [g, ¥;, 2, are the rectanguiar coordinates of two

points,on'the line, and r is the distance between the two points, show
t%t\t}w expression {2'731)
w4

Z{(po) Pagt Py P y=rr'dsing.

%" Ex.2. Bhow by expanding the determinant
a \ 4 : :
} R R TR | |
Xy ¥y & 1§
Xy Vg By 1
RN I O |

in terms of the minors formed from the first two and the last two

rows that if r, #' are the lengths of two opposite cdges of a tetrahedron,
d the distance and { the angle between these edges, the volume

V=3%wdsini.
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2-9. Transformation of coordinates,

In 1-3 we have already considercd the effect of changing the
origin alone, We shall now consider
the transformation to new axes with
the same origin. Let the direction-
cosines of the new axes of &', 3/, 2’
with respect to the old be respectively
(4, my, ny], [, 15, 73], [y, my, ms),
and assume that both sets of axes are
orthogonal, Let Pbe any point whose
old coordinates are [x, ¥, 2] and new - A
coordinates [«', 3, 5']. Then, pro- Fig.0 /5
jecting OP on each of the original axes in successionpwe have,
since the projection of OP is equal to the sum of the'projections
of ', ¥ and ¢/, PN

x=hx' +hy +Ly RS
y=m1x'+may’+nzsg’~'{.3
F=mx’ +ny + 25"

Also, since [4, L, [] are the direcqibﬁ-éosines of Ox with respect
to the new axcs, Ny
x =Lahan y+ )
y’ﬁﬁg}+mzy+ﬂzz -
S Lt myy+ 3|
These two sets ’o\f':, etiuations, which represent fnwerse trans-
formations, c§x(b,c represented by the scheme

\:»\: & A y.& o

o x| 4L L L

_e y|m omy oy
\/

N B m oy

The nine coefficients are connected by a number of equations.
Since f,, my, n; are a set of three direction-cosines, we have
312+m1'3+n12=1."l
Similarly LE4mlt4mlt=1,.
LEtml =1,
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Further, since the new axes are mutually at right angles,
L+ mymy+nyn,—=o ‘
L+ mgmy +ngmy=0
Lib+mym,+nm=o0
These six equations reduce the nine constants to thiee.
Another set of six equations can be wtitten down by con-

sidering the old axes in terms of the new, and we have

L2 412 +12 =1, mum 4w+ mgn,=o,
mPtmlttmi=1,  mb Fngly s =0, O
mP i +ngt =1, Ly +Lm, +Lm, '=;é)\.
2-91. This transformation is equivalent to a,p’o‘fé‘tion through
a definite angle about some definite line. Thelangle & and the
ratios of the direction-cosines {A, p, v]<pf\the axis of rotation

form the three independent con- RN C

stants which are required, and the¢ 0>
equations of transformation cqulii*
be expressed in terms of these.
Thus, let OC be the axis ofvm’t'ation,
and consider avector oW
OP=r=[x, ;%]

which is transformédhinto

OQ=1‘°\§:-[x’, 3y, &) A
by arotatiopnthrough the angle — g

Fig. 10

rabout Q@2 This is equivalent to a rotation of the coordinate-
system through the angle + 6. In the plane POC take 04 1 OC,
anditake OB 1 the plane A0C, Draw ON 1L AOB. Then AON =#6.
J:_x\;ts POC=0u=0QO0C. Draw NL|BO, LP’ |OC and Q|| LN,
Then the vector

A Now 0Q=0F' +P' Q'+ Q.
OP'=OL cosece=ONcosf cosece — OQ cosf=OP cosd.
Therclore OF =r cos?.
PQ'=LN=0ONsind= OQ sinz sinf,
therefore _ P =axrsing,

where a is the unit vector in the direction OC,
QO=NQ-LP'=(00Q-~ OP') cosa= OP(1 ~cos ¢) cose,
therefore Q'C=ala.r)(1— cosf),
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Hence we have the vector equation

v =rcost+(ax ) sind+(a.r)a(x - cosdh),

Writing this in terms of the rectangular components referred to
the original axes we have

x'=2xcosf+ (vy —puz)sind + A (1 — cos ) A+ py + ),
V' =ycosl+(Az —v)sinf + g (1~ cosf) (e + py + va),
z'=2cosf+ (ux—Ay )sin + v (1~ cos ) (A + py + v2). N

E § \'
ey {
I'hese are known as Euler’s equations of transformation. N

The inverse equations are obtained by mterchanqmg accentéd

and unaccented letters and changing the sign of 8. ¢ 3

't ¥

P\
2:92. In the gencral orthogonal transformafion the de-
terminant

D=L m n | e\
\
L my my | N \
| Iy my ta, U\

is called the modulius of the transfmmatwn Squaring it and
using the equations of 2.9 we find\ =1, and therefore D — + 1.
For the identical tran%formfl“tmn 1= 1=my=mn, and the other
elements all vanish, so tha”g\?‘)z + 1. 'The sign is negative when
the two coordinate-syste{fma?are one right-handed and the other
left-handed.

2:95. EXAMPLES.
. Find thg"e\]i'iation of the plane through the line x=2y=12
perpendlc%{a‘r to the plane sx+4y—35=8.
Ans. ~I7x 28, —9gz=0,

~Rcduce to the normal form the equations of the line of
\ttrbnctlon of the planes
43+4y—55=12, 8x+ 12y —135=732,
and write down the cquations of its pro jections on the three co-
ordinate-planes,
X—1_y-—2

=&
Ans, ——=2"=" 1 4y—32=8, 2x—z2=2, Jpy—2y+1=0.
m. — 3 4 4y —3 3 3
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.3. Find the three plane angles at the vertex of the trihedral
angle determined by the three planes xy+2=4, y—g+5=o,
x=y+2, and find the coordinates of the vertex.,

Ans. 9o, 9o°, 60°; [1, —2, 3].

4. Tind the equation of the plane (i) through the origin

" parallel to cach of the lines (x—y+45=1, 2x+y — 33=2) and

(x4+3=2y+1=32+2); (ii) through [x, 1, 1] parallc] to each of
the lines (¥—3y+az=o, an’-+ byt e®=0). A

Ans. (i) 138+ 20y —6gz=0; (ii) ¥~ 3y +22=0. O

5. Find the equations of the lines through [1,?5,’"3] which cut
the axes of x and v respectively at right angles, ‘“and the equation
of the plane containing these lines. \%

Ans. (x=1, 3y=22), (y=2, 3x=2)5:6k+ 3y~ 22=F6,
6. Find the equation of the pLaije\through the line
(3% —4y+52 =00, 22+ 2y~ 35=4)
and parallel to the line =2y =3z,
Ans. x—20y+272 =04

7. Find the twopoints on the line x=2y =132+ 6 at a distance
5 from the pl 1ié‘2x+y—2z=_5_
Ans. [1266, 2], {228, - 48, —471.
N\ ]
8. Ptove that the lines 25—y + 32+ 3 =o=x+10y—2I and
2¥ 79&0="x+%—06 intersect. Find the coordinates of their
mon point, and the equation of the plane containing them.

Ans. [1,2, —1], 2+3y+2=6.

9. Fmnd the condition that the three planes a=cy+ bz,
y=ax+cx, x=bx+ay may pass through one line.
Ans. b4t aghe=1,

10. Find the equations of the two planes through the points
[0, 4 31, [6, =4, 3], other than the plane through the origin,
which cut off fram the axes intercepts whose sum is zero.

Ans. 20— 3y—~63=0, 65+ 3y— 25— 18, (Math. Trip. 1, 1913.)
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.11, The three lines
x=y=1s x—2=i(y+1)=3—1, 2(x+1)=6(y—~2)=3(2—3)
arc three non-intersecting edges of a parallelepiped; find the
equations of its six faces.
Ans, x—sv+eg=0and —8, yx—3y—=z=o0 and 16,
3x+y—gz=o0and —16.
12. 'The coordinates of four points are [a—&, a—e¢, a—d],
[6—c,b—d, b—al,{c—d, c—a, c~b], [d—a,d—b, d—c]. Provg

that the straight line joining the mid-points of any two oppos'lbe\

edges of the tetrahedron formed by them passes through the
origin. N
13. Find the equations of the projection of the lbqa
x=1_y+1_s—3 \¢

S
on the plane x+2y4-z=06. RS
s, E3_YH2_5-7 Ko\
4 -7 10
14. Prove that the lines '.}'a’

L]

xoa_y—b_s-c 8 x-d J_{_;E;T—Cf

~N\
intersect, and find the cq‘orqutes of the point of intersection
and the equation of\he plane in which they lie.

CAns. [a+d, b+b’ e+, Tw(be ~be)=o0,

I5. Provest\hat the lines
x—~q+ﬁ y—a_z—a-d x—btc_y-b z-b—c
&0 «  a+s ’ B—-y — B B4y
qr&@oplanar, and find the equation of the plane in which they
\’he (Wolstenholme.)

Ans. x—z2y+5x=0,

16. Find the equations of the line through [1, 2, —1] per-
pendicular to the plane 3x— 5y -+ 42=35, the length of the per-
pendicular, and the coordinates of its foot.

xo1_y=-2_3+1 8v2 [49 2 1}

A TS T s e s e

N\
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t7. Find the distance of the point from the straight line, and
the coordinates of its foot:

(i) [6, 6, —1] and ¥o2 Yyor_sx+3

1 2 -1’
(i) [5, 4, 2] and "“71.:_3—.}:3“;:.
QS
() [-2,2, —3] and T3 YEX_ =2 0
I 2 A\
Ans. . W
@ v, (45, ~ 5], (i) v24, [1, 6, 0], (H)wes, [4, 1, —2].
- .“\\\\o
18. Find the length and the equatiqﬁg\)f the common per-
pendicular to the two lines: A0
@) P23 Y4 T 009wty o-g
I A ey
(i) 2o4rt2 238y yiz sog
2 1 :{:1: 3 2 I
¥—=7 Y+ 7 X+7 y~8 oz
) —f=c 8= 0 2T/ YTo_ &+
( ) -1 - w:\“\ 1 P T 3 2
(i) EI5M 2=g x6_yiy s
N A
Ans JI JECL Y2 s-x
\,;\\(4%/ 4 2
“‘{\ (11) ;\/35, Ei; :Ji.‘__’%:rf:_
Q (ifi) V59, T4 Y+ _s-2
1 -3y
(iv) 2y/29, ¥TI_Y+1_z+1
3 2 = :—.

19. Show that the straight line joining la, b, e, [«, &,
Passes through the origin if aa'+6b’+c.«:’:pp’, P and p’ being
the distances of the points from the origin,
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20. Prove that the equations
at+mz—ny btnx—Iy_ct+ly—-mx

m—n n—1I [—m

represent the line at infinity on the plane
(m—myx+(n—Dy+{l—m)z=o0;

unless af+bdm+en=o0, in which case the line is indeterminate
and its locus is the plane

m—myx+{n—Dyy+{l—-miz=a+b+c s\.

¢\,
21. Find the equations of the planes through the lineg of

intersection of two of three given planes perpendlculabtfg the

third, and show that the three planes pass through oHg) line.
~\
22. If the tetrahedron whose vertices are

Ai=lx vy 5] (i=1, 2, 33fo~1\’
is such that the perpendiculars from the xertices on the opposite
faces are concurrent, prove that O

By, -+ Tovg a0y = Ly 2y + Ty = Zoey 4y + T 1y,
and deduce that the three sums af'the squares of opposite edges
arc cqual. (Orthocentric tetrafivdron.)

23. If two pairs of oppn\rtt, edges of a tetrahedron are at right
angles prove that the‘t@xrd pair are also at right angles. Hence
prove that for such @'tetrahedron the sums of squares of opposite
edges are equal,‘ and that the four altitudes are concurrent.

24. If AB\G}? is a tetrahedron whose altitudes are concurrent
in a poipt ¥ show that each of the five points is the orthocentre
of thestetrahedron formed by the other four. (Orthocentric

peniad)
23. Show that the equation of the plane through the line
.x=1x,+1,2, etc., perpendicular to the plane ly+my-+ny=01s

x ¥y & 1|=o.
¥ ¥ & T
L m oy |

]
I m =n o
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26. 4, B, C, D are four points in space, and PO, R, S are

- points dividing the segmerits 4B, BC, CD, DA in the ratios

D:L, g:i1, vix, s:1; prove that if pgrs=r the four points
PO R, S are coplanar,

27. Four spheres touch in succession, each one touching two
others (the number of external contacts being even): provye, that
the four points of contact li¢ on a circle.

N

: )

28. Pand Q are two variable points on fixed stredi Kt lines,
each determined linearly by a parameter, z and ¥ ‘fcspectively.
If the line PQ always cuts a fixed straight lingsshow that 7, are
connected by an equation of the form \‘

ot B+ yut =g, )

v

/
= - z '\ .

29. If (#) denotes the distance Detween the points 7, and P,
show that the six distances conpeeting four coplanar points are
connected by the relation 4

S+ 2GR i S Gk =,

30. Show that thesiy angles formed by four concurrent rays
OP,,..., 0P, FA’Lk_EQ in pairs, are connected by the relation

3

\\ | costl; | =o,

3L If {\p) -and (¢) are the line-coordinates of t{w.fo_intersecting

lines, shos¥ that ( p+2g) are the line-coordinates of a straight

ling..Qe nging to _the plane pencil determined by the two given
37

\\ 32. From any point P are drawn PM and PN perpendicular
' to the planes zx and %y. O is the origin and ¢ B, v, & are the

angles which OP makes with the coordinate-plancs and with the

cosec?f = cosecty - cosec? B+ cosec?y,

33. Deduce from Ex. 32 that if p7, ;g perpendicular to the
plane yz, OP makes equal angles with the three planes OMN,

ONL, OLM; and that the plane OPL is equally inclined to the
planes OLM and OLN. -
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34. Show that the result in Ex. 33 is equivalent to the fol-
lowing theorem: 4BC is a trirectangular spherical triangle and
£ any point on the sphere; great circles through P perpendicular
to the sides meet them in L, M, N; P is the spherical centre of
the small circle inscribed in the triangle LN,

35. Tf from the point P=]a, b, c] perpendiculars PM, PN are
drawn to the planes of zx, xy, {ind the equation of the plane
(1LY and the angle which OP makes with it. "/\
Ans. —~bex+cay+abz=o, coslabc (Sa?Sh2e)E

36. Find the equation of the plane which bisects the Jomﬁ‘

[+, 3, 2] and [xy, 3%, 2] perpendiculariy, h\:\"”g
. ‘O
Ans. Sx(ay— xy) =1 (22— 5,2 v
Nt
O
O
4
,(.Q‘\
AN
O
. % N/
\‘ ¢
.:s:“'
N\
R
D
N
7N
A
l”‘\.

P,
£
O
P \v/.
\5/
"\w
\./
&
) .
£
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CHAPTER III

GENERAL HOMOGENEOUS OR
PROJECTIVE COORDINATES

3-1, A large section of geometry deals with relations, such as
those of incidence, which involve no measurement. This i3.5¢b-
Jective geometry. It is more fundamental and prmnuye than
metrical geometry, in the sense that it involves fe\s&r fum”-
mental assumptions or axioms, Itis possible to pIoy e theorems -
of projective geometry by metrical methods, but without the
introduction of additional considerations wh.lch‘ do not belong
to projective geometry, it is not possibleMo.prove theorems of
metrical geometry by projective geometiy. I'hus we may prove
the collincarity of three points by tKe“Theorem of Menelaus,
which is a metrical theorem, but’if\the theorem of collinearity
is a purely projective one it shoult‘l be capable of being proved
without any metrical considerations.

In order to deal with prgjéttive geometry analytically we have
to devise a system of coordinates having no metrical basis. We
must distinguish h{:rc\betwecn metrical and numerical. Naturally
a systern of coc){I{nateb must be numerical,

3-11. In géometry the primitive elements are points, lines, and
planes; apdthe primitive forms or assemblages of elements,
arranged\accordmg to their dimensions, are as follows: '

ﬁ\s\ Range of points (pomts on a line),
Auxial pencil of planes (planes through a line),
" b. Plane pencil of lines (lines lying in a plane and passing throu gh
a point),
2a. Plane field of points (points in a planc),
@'. Bundle of planes (planes through a point),
b. Bundle of lines (lines through a point},
. Plane ficld of Iines (lines in a plane);
3a. Space of points {(all points in space), .
. @, Space of planes (al} planes in space);
4. Space of lines (all lines in Sp-ch)
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Point and plane are reciprocal elements, line is self-reciprocal.
Forms whose refercnce-letters are distinguished by an accent
are reciprocal; 15 and 4 are self-reciprocal,

3-2. One-to-one correspondence. We shall consider first
the one-dimensional forms, and, as typical, the range of points.
In determining the position of a point on a given line we as-
sume a (I, 1) correspondence between the points and the real
numbers, so that with each point is associated a certain number;
its coordinate. If the points are renumbered, i.e. subjccted to
transformation of coordinates, we assume that the old nunibcr
x is definitely associated with the new number x' bv a {1, 1)
correspondence, and that this correspondence is reprLsented by
an algebraic relationship lincar in both x and &/, vizd/

vax' —ox+0x" —B=o0,

w\,/
Xt B ¢O
or _yx—f—_B' "\

Instead of x and &' we may write x/maitd x’/y', thus introducing
homogeneous coordinates, and theénthe equation of transforma-
tion can be replaced by the twd€quations
pE'sax+ By,
NN
(Y =yt dy,
where p is a factopef proportionality. It is essential that o8 — By
should not be ;?\erO for then %'{y" would be a constant ratio.
x and y must agt be both zero. The parameter xfy has a definite

nurmericalvaliie except when y=o; in the latter case we denote
the par cter by the symbol oo,

) ;3\21. As the transformation is determined by the ratios of the
Sfour numbers =, B, v, 8 we can make any three given points have
specified numbers, but a fourth point will then have its co-
ordinate determined.

We have thus to consider the coordinate of a point determined
with reference to three fixed points. A set of four points on a line
is associated with a certain function, the cross-ratie of the set,
which is defined (metrically) as the ratio of the position-ratios
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of one pair with regard to the other pair, all taken in an assigned
order. We denote the cross-ratio of the two pairs £, O and

X, ¥'by PX ,PY PX ,0X

X/ QY PY/ OV

This function, as is proved in text-books which treat projective
geometry metrically, is unaltered by projection; which suggests
that we should define the projective coordinate of a point as the
value of the cross-ratio of the set consisting of the given noint
and three fixed points taken in a certain order. But as cross-
ratio is here defined metrically we must proceed sgitwhat
differently. N

Ny

(PQ! XY)=

3-22. Coordinate of a point on a line. Také three points
on the line, 4, B and , and assign to these respeétively the para-
meters 0, o0 and 1. Then if Pis any othed gaunt, the number or
parameter x which corresponds to it is calléd the coordinate of P
referred to the base-points A, B and 'zizz}t-pofm I If we are to
avoid actual measurement it is r.lot': possible to determine the
number corresponding to any peintwithout using a construction
which goes outside the line, }Ve shall consider this construction
in 3-63. For the present however, we shall assume that the
line has been graduatcd¥so that each point has a diflerent
nuaber attached to i\ If another pair of base-points 4, B and
another unit-point\B are chosen, whose parameters are a, # and
¢, there is as déﬁnite linear transformation which changes o,
@0, 1 into gy by'e respectively, viz.

..\::iri@_fa)x-!ij—-E_) x—f-:b x—a
N\ {e—a)x+(h—e) ’ Te—a'x b
\W{«e}eﬁn consider this either as a renumbering of the points, so

_Jthat 4, B, E, P take the numbers g, b, ¢, x'; or as a geomeirical
O transformation by which these points become 47, B’, E', P'.

0 H . e xZ - 5 +
-—J!D——-—_Eo—__ o Pa_ _A re . .r
a i Bb Px_ A o o— g P
Fig. 11

[‘hen_ the point P’ is related to 4, I’, ' in exactly the same way
as Pisto 4, B, E, so that when 4’, B', E' are given the para-
meters 0, @0, 1 the coordinate of P* with regard to the system
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A', B, E’ is also x. The condition which the projective co-
ormnate has to satisfy is that the geometrical cross-ratio
(PE, AB)=(P'E’, A'BY),

3-3. Cross-ratio. We now introduce the eross-ratio of fwe
parrs of numbers as a function of the four numbers whase value s
not allered by a linear transformation.

Consider first the cross-ratio (x, 1; 0, c0) which is a function
of the single variable x; and denote it by f(x). Now subject the
numbers to the linear transformation which changes 1, o, .0 .

respectively into /', m and m’. The transformation is )
P O
(I —m)(x" —m"} N
Then since the value of the cross-ratio has not been a&\lr\ered we
have AL — ') (& —aia)!
(s 25 my=f(x)=F (s m)(xw))

or, writing / instead of &,
(41 m, my=f (I m ;N %‘)
? I—m' l’
The simplest form for S{x) which We Can use is x, We therefore
define the cross-ratio j
, . j—lm A —m
T
) '

331 We may study\ﬁus function quite apart from geometry.

Writing it in ’Eerms ©f four numbers g, b, ¢, d, we have

b ed N b ¢ _(abted)—(bctad) C-A
(ab, ¢ li( —a/ b—d (ab—l—cd) (ca+dd)” C—D’
where .\ A be+ad, B=ca+bd, C=ab+cd

4, B C are cach unaltered if we interchange any two of the
Immbers and at the same time interchange the other two. Hence
the/ross- -ratio is unaltered by the double interchange. Although
there are 24 different orders of the four numbers there are onlv
six different values of the cross-ratio, viz.

A-B B-C  (C-4
A-C' B-A" C-B
and the reciprocals of these.
sAG : 4
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The interchange of & and ¢, or of a and 4, leaves A unaliered
and interchanges B and C.

Hence (b, de)=(ba, cd)= %Eﬁ - (abI cd)’
B-A  C-4

while (ac, bd)y= E_c- "= (ab, cd).
If (@b, cd)=rk, the six values are
k, kY, 1—k, 1k, (1R, (1—k7Y)L ~

3311, In geneml the six values are all distinct, but Lhe;re Bre
certain cases in which two or more of them become eckilfli
If b=k, k®=1 and k= + 1.

(1) If k= +1, (ac, bd)=0 and either a=b or‘c d In this
case there are three values, o, 1, 0. m\

{2) If k= —1, the set of numbers is saidtdvbe harmonic. The

relation in this case can be written ApB=2C, or

(a+B)(c+d)=2fabFed),

and is symmetrical in both a, b aide, 4. In this case there are

. again three values, —1, 2, .8 ‘hé harmonic relation associates

the four numbers in pairs; aJ .& and ¢, 4; and it is only when they
are associated in this way Athat the cross-ratio has the value — 1.
(3) Hh={1—k) &2 k+1=0. kisacomplex number = — w,
where w?=1. The 8€t of numbers is then said to be equian-
harmonic. TerN\'e only two values, —w and — 2
It is easilyfyerified that these are the only cases of equalities.

15 . . - .
3-32; YWhen numbers occur in pairs it is often convenient to
represefit them as the roots of a quadratic equation

O\ at®+2ht+b=o,

,\JT'he discriminant of this quadratic

C=ab—h?
determines the nature of the reots, which are real, equal, or
imaginary, according as C is negative, zero, or positive.
3-321. Consider two pairs of numbers A, X and g, u’ repre-
sented by the quadratic equations
@’ +2h i+ b =0,
M2+ 2kt + by =0,
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Then M=blay, A+X = —2ha,

jep' =gy, ptp’ = —2hyfa;.
The condition that (A, ') should be harmonic is

A—pe jAN—p _
P\——p.’/mq b

or 2{MW 4 pp) = A+ ) (p+ ).

Substituting the values of the symmetric functions we obtain |
¢ 2(61/ﬂ1+bg/a2)=4h1 kml'rﬂlag, N o

ie ay by agh, — 2k f = 0. \‘ D

This function is the bilinear symmetrical expression whic’h is
associated with the quadratic function ab— 72, the disdriminant
of the quadratic. The term apolar is also used to. &cécribe this
relationship.

3:322. If we write a;0,— 2,2 =C; and azng\lr =y, then we

may write @b, a,by — 2kl =20],. \‘
If >0 and >0, so that both pairs of elements arc

imaginary, we have \
: {a by + an 1}2 k 22
>(a152+a2,r)2 FEN N
Le. > {ay bga )2,
Henee €, cannot v; nish) in this case, i.c, i a harmonic set at
least one of the paz’rsgmst be real.
3-323. To ﬁqd xthe cross-ratio of the two pairs
\ a2+ z2hi+b=o,
\~ a2+ 2kt + by =0,
Since the roots of cach equation can be taken in either order,
therdare two values for the cross-ratio, (A, pu’) and (AN, p'p).
“These being reciprocals, their product=1. We proceed to find
their sum. Let C=AV +pp/, A=A +Ap', B=Au'+Xp. The
two values of the cross-ratio are then
(C-4)(C—B) and (C-B)(C—A),
and their sum
_(C—ApH(C=Bp_ . (A+BF-4dB
(C—-4)(C—B) C:—C(A+B)+ 4B
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Now C=bfay+bya,=(aby+ abr)/aras,
A+ B+ )N+ )= g,
AB =2 (g %) 4 g QBN =0 (a4 )"
e (A XY= 420 !
=4kt ah + byt ayby— a4y by By) e @t
Hence we find
{(A+B)—4AB=16Cy Cpla,"ay’
and CP— C(A+ By+ AB=4(C2 — Cy Cpp)fai?as?,
whence the sum of the cross-ratios is & )
2(C?+ Oy Cp){(Cr® — Cy C). W

3

The two values of the cross-ratio are therefore~tﬁc E‘ootc, of the

N\

N ¢

~ quadratic equation Coi O » m\
kz—zclg —{-_Cuc’zk—t—l 3
—Lnbla ..\\,}

™

. 3324, Conditions that the cr osw’aﬁo of two pairs should be
real, and positive, ¢
We assumethat the coeﬂimmt\a of thetwo quadratics are allreal.
'The condition that the cr«dss ratio should be real is

(@i&&z
(’12 - Cll C"z

which rcduces, to() Cr2CCyuz 0,

or simply A\ Cy Con 0,

i.e. the t}v\o}p:iirs are either both real or both imaginary.

3-32B'T'he condition that the cross-ratio should be positize is

i"\'"
,\\~' Gy + € Cy
\ Cr?— CrCy
Le. ’ Cpt> | C1 Gy i y

or, since the cross-ratio must aiso he real,
Cpl> Crly>o.

' . Ct+ 0, .
Ex. 1, Show that if Cif_ le—c”zz i either (g, Mp') or (Ap’, A'p)
is harmonic, 1. = '
o o O+ O G
Ex. 2, Show that if 6122—6116‘2—2:1’ the two pa]rg are equian—
harmonic. Wt 2
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3-41. We have now to define the geometrical cross-ratio of
four points, and to do this we must consider the line as lying in
aplane. We think of the cross-ratio in the first place as a property
of the four points which is not altered by projection, but we
shall have further to endow it with numerical valueso that it can be
treated asanalgebraic quantity capable of addition and multiplica-
tion. These operations will be introduced by suitable definitions.

The fundamental property is that if ARCD and 4'B'C'D’
arc two transversals of the same pencil, then the cross-ratio,
(AR, CDy=(4'B’, C"D"). We say that (ABC)is in perspecmtm
with (4'B'C"D’), with centre of perspective O, and write this

~

(ABCD) 7 ,(4'B'C'D). N
We assume that if (4B, CD)={4B, CD’) the pomfgsD and D'
coincide, or shortly D=1,

The cross-ratio depends upon the order o{the four points.
There are 24 different orders, \‘
but we can prove that they fall A\
into six sets of four, each set \J
forming equivalent cross-ratios. _
In Fig. 12 we have
(ABCDY A, (PBRS) "

Fo(PAQOY Ry (BADC).
Thus the cross-ratios is un-
altered by the simfultancous in-

/

0

*

terchange of A\B and C, D. Fig. 12
Thus (AB\ CDYy=(BA, DCY=(CD, AB)=(DC, BA).
342, \1 “special case of great im- 0

portari{;e occurs when
) (4B, CD)=(B4, CD).

ét A, B, C be given, Take any
two points O and Q collinear with C.
Let 04 cut OB in R, and QA4 cut
OBin S. Let RS cut AR in D). Then
(4B, CD) R, (RS, LD) R ¢(BA,CD).

By this construction D is uniquely
determined when A4, B, C are given

Q!
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in this order, and we assume that the same point will be
determined if we take any other points O, (J collinear with C*.
In this range the relation between 4 and B is symmetrical, and
since also (AB’ CD)Z(BH, DC),
we have - (B4, DCy=(BA, CD),
so that C, D are also related symmetrically. (4B, CDjis said to

be harmonic; A, B are harmonic conjugates with regard to £, D\
and C, D are harmonic conjugates with regard to 4, B.

343, If (AB, CDY=(A'B’, (') the two ranges aielyot
necessarily in perspective, but can be connected by, alchain of
perspectivities. In general we say that they are projeetively re-
lated or projective; 4 and A’, B and B, etc., are “cbrrespf)nding

“ points, They are in perspective if three of th"é:}our lines A4,
BE’, CC', D' are concurrent; for if Az(,, BB, CC are con-
current in 0, and OD cuts 4’'B’ in Dy then

(4B, C'Dy)={4B, CIhS{A'B’, C'D},
therefore D,=D. In particulagif (4B, CD)=(4B'C"D") then
BB’, CC’, DI are concurready

If on each of two straightlines we take three points 4, B, C
and 4’, B, C' then if~P is any point on the first line there is
a definite point P/uen the second such that (ABCP) and
(A'B'C'P’y are éiet:tive. A (1, 1) correspondence between the
points of the %o lines is determined when three pairs of corre-
sponding peifts are given,

8-44.Flie last statement is so important that it has been called

the ‘ﬁ@—ﬁamcntal theorem of projective geometry, Assuming the

theotem, which implies that the correspondence is unique when

¢ '\”thj'{if:‘ pairs are given, and which requires for its complete proof

O con_mderations of continuity, let us consider a construction by
which the correspondent of any point P will be determined.

* This can be proved with the help of Desargues’” T'heorem on perspective .
triangles, Thus if (_)’, &, R, 8 are points determined in the samc way as
0, 0. R, 5, the triangles OQR, ('Q'R are in perspective since the inter-
sections of QR and O'R’, RO and R'0’, 0Q and O'Q’ are collinear, hence
0o, o0, _RR: are concurrent. Similarly the triangles OQS and G'Q°S
are in perspective, hence OO, QQ, 88 are concurrent. Therefore Q0.
R;]R » 98" are concurrent and the intersections of QR and V'R, 0.5 and
Q'S', RS and R'S’ ate collinear, i.e. RS, R'S’ and AB are concurrent.
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We h_ave' A, B, C on/, and the corresponding points 4, B, €
on . On AA’ take any two points O, Q. Let OB cut OB’ in

o e

Fig. 14
", and OC cut QC in C*, Let B"C"=1" cut 42 1h /1" Then
(ABCY R ,(A'B"C"y Ry (4 ’E?Q\)
If Pis any point on / its correspondent onf&isfound by the con-
struction: let GP cut ¥ in P”, then QP euts I' in P'.

3-45. As an cxample of two proj §§t’i.ve pencils of lines consider
a conic, defined as 2 plane curvegvhich is cut by an arbitrary line
in two points. Let 4 and B be¥ixed points on the conic. Then
a variable line ! through Auts the conic again in a point P and
the ling BP or I' unlqu} corresponds to /. If P, O, R, S are
four points on the LbQ\}C we have then

A (PQRS)=B(PORS).

3-5. We ma.y have two projective ranges ABCP... and
ABCP, bn the same straight line. This is called a Zomo-
graphy, ,Q{rthls case any point

*of the\line may be regarded as
be}mgmg to either of the two
}ahgcs and there will be con-
usion if the ranges are not
- kept distinct. As an example of
a homography let  be a fixed
line, and € a conic, cutting /
in Dy and D,. Let O,, O, be
fixed points on the conic. If P isany point on/, a corresponding
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point P’ is uniquely determined by the following construction.
TJoin PO, cutting the conic again in L, join O, L cutting Z1m ',
Then to P, as a point on the sccond range, corresponds the
unique point P determined by the reverse construction, 1.e. join
P'O, cutting the conic in L, then O,L cuts [ in P. Dutf P
is considered as belonging to the second range its correspondent
is a different point Q. Thus the homography is not in general
symmetrical, The points D, and D, are self-corresponding points
or double-points of the homography. They may be r\;al, £0-

_incident, or imaginary. "e \

3-51. Involution. The case in which the two p;)mib corre-
sponding to a point P coincide is important. In{iHis casc the
relation between P and P is symmetrical and'the homography
is said to be inwolutory, or an fnuolution. ThEck is no need then
to distinguish the two ranges on the lme\ wFoints I and /7 are
connected definitely in pairs. We have'then (PP, D, 1.)= (4P,
DDy} and therefore P, P’ are harmomﬁ: conjugaies with regard to
the double-poinis. .

In the above construction, Vchén the two pairs O; P, O, P’ and
0, P, O.P both intersect on
the conic, we have

L(G,0,, Dy D)) \

= (PRAD.D)

The four poul’ts 0,0,, DD,
are said to form a hnrmomc
group oithe conic. Since
'\afe harmonic conju- T Fig. 16

ga"os with regard to D,, D,, the polar of P with regarcl to the

N\ ¢onic passes through P'. An involution is thus formed on any
/ line by pairs of ‘conjugate points with regard to a given conic.

Similarly pairs of conjugate lines through a fixed point form an
involuticn-pencil,

In an involution the double-points may be real or imaginary;
but they cannot coincide unless the involution degenerates, for
then either P or P would coincide with them. When the double-

points are real the involution is called Ayperbolic; when im-
aginary, elliptic.
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3-52. An involution is completely determined by its double-
points when these are real. More generally, an inoolution is de-
termined by two patrs of corresponding points. For a projectivity
is determined by three pairs of corresponding points. Thus
taking 4, A’', X and the corresponding points 4°, 4, X" a pro-
jectivity is defermined which is an involution since A’ corre-
sponds to A, and 4 to 4”,

AN Fig. 17 .

Let 4 and 4, apd iXRor Y’y and X' {or Z), be two pairs of
poirts on a line a."i‘h ough X and X' draw any lines b, ¢ inter-
secting in ¥ (gg%). On ¢ take any point C. Let CA and CA’
cut b in B’ and*®, and let AB cut cin C'.

Then iﬁfl"“is any point on a the corresponding point P’ is
found Bywthe construction: Let CP cut b in O, AQ cutcin R,
and R cut  in P’. To P’ should correspond P by a similar con-
stretion, i.e. if CP’ cuts b in Q, and AQ cuts ¢ in R, then BR'

\M\$JT5UId pass through P. To prove this consider the six points
AOQ'CRP’ on the two lines AQ'R and CP'(, then by Pappus’
V'heorem (the particular case of Pascal’s Theorem for six pointson
a conic when the conic degenerates to two straight Jines) the three
Intersections  s4 , o _ oc,_

(Ch)=F: Gp)=5 (pa)=*
are collinear.
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Then
(PPAA XX ) Rz(RRCCZZY R (O BB YY)
Ag(PPAAXX),
and thus we have involutions on the three lines a, b, c.

3-521. Consider the quadrangle BCQ'R. Its opposite sides
C(Q’ and BR, Q'R and BC, BQ' and CR are cut by ¢ in the
involution (PP’, A4’, XX"). This often  affords a simple way éf\

recognising that six points are in involution.
: O

3-6. We now return to the deﬁnltmn of geometrmgi tross-
ratio, which up to this point has only been. congideted as a
magnitude in so far as we can recognise when 137 cross-ratios
are equal. We have now to consider cross-ragigs as capablc of
being added or multiplied. We define thesgioperations in 1o
special cases as follows: N

(i) (PO, XY} x(QR, XV)= (P} XY),
and (i) (PX, QY)= (PO, XY)——I
In (i), putting Q=P we hm (PP, XY)=1,
and in (i) " (PX, PY)=o.

P4

Ifence "’\
(PO, XT)x @}b XV)=1, or (OP, X¥)= mortees
and, puttmg\Q X, ' (
:'\w_ . (PX,XY)= 1 o,
«@c Tf now we take three points O, E, U and attach to them
th@ numbers or parameters o, ¥, + o0, we may defince the para-

“meter of any point P as the value of the cross-ratic (PE, OU) as
\ ) “this is consistent with the values just determined, for

(EE, OU)=1, (OF, OU)=o,
and . (UE, OU)=(LU, UO)= + w.

We can now identify the numerical valuc of the geometrical

cross-ratio with that of the four parameters as previously defined
(3:3).
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Let P, P, O, O be four points with parameters A, A, p, ',
so that

(PE, OUY=2, (P'E, OU)=X, (QE, OU)=p, (Q'E, OU)='",

Then gz(PE, OU) x (EQ, OU)=(PQ, OU),

whence 1 -'3: (PO, QUY;

and similarly I —-%=(P’O, ou).

Hence ' O\
£~ (PO, QU) < (OF', QU)=(PP’, OU)=(QU), P47

< D

and similarly .

r”*’_)‘ . 'y ' J .."’j\.\:
K= (2P, 0'U)~(@'T, PRYO

whenee finally . \\

)\—,LL J"A“P" : I S NN Haldl Yo

Ap Ao, )= (QUIBR) X (UQ', PP)

A—pf XN =—ph Y O

={QU", PP")=(PF', QQ").
3:62, We have not yet, hg’ﬁ#éver, actually determined the
paramecter of any point except the o
arbitrarily assumed points ¥, E, U.
'The harmonic OK‘\é;uiadrilateral
construction enablestus to deter-
mine the poin{"i::o}responding to
the parametdr 1. For if
(POAKD) 7, (PO, X'Y)
N 7, (QP,XY)

theftsince £ X d L4
Y, . Fig. 18

AN (PO, XYY (QP, XY)=1,
and since P and Q, and X and 7V, are distinct, it follows that
(PO, X V)= —1. Henceif (PE, OU)is harmenic, the parameter
of Pis —1. _ _

3-63. Now, for the moment altering the notation, if we start

with the three points Py, Py, P, to which we attach the para-
meters o, 1, 00 We Can construct points corresponding to any
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rational values of the parameter by a repetition of the quadri-
lateral construction alone, Thus, if (P, P, P, P..) is harmonic, by
36 (il) (PP, PyPy)=2, and thereforc P corresponds to the
parameter 2; if we denote this point by P, we have similarly if
(Py, P, Py, P} is harmonic then (PP, P, P..) = 3, and proceeding
in this way we get the points Py, £, 7%, ..., I, ... corresponding
to all the positive integers, with the general relation
(PoaPps, PuPr)=—1. ~

Again, if (PP, PP,)= -1, then (PP, F,P,)=j, and 50 K
is Py. Similarly if (P, Py, PP))= —1, then P is Py, and ‘pro-
ceeding in this way we obtain the points which correspond to
the fractional values 1/, with the general iterative relation

(PGPI,.*m Pl,"(raﬂ)P:,-’[n—n) =—1I. '\‘ 4
Further, (P{n—ll_."mP{ﬂﬂ)fms Pn,-’mPc:) =0y

hence we obtain all the positive fractiony wim; and lastly
(PyPo, PP )3T,
hence we obtain the corresponding ‘négative numbers.

From the three points P,, PL,'f;g'\m'e thus obtain points corre-
sponding to any rational valuéef the parameter. This construc-
tion is called the Mébiug Net or net of rationality.

We shall dismiss the'edse of irrational values by remarking

that -any irrational th er can be expressed as the limit of a
sequence of rational humbers.

3-64. Prqieéﬁ%e coordinates in a plane and in space.

We h;n{é;deﬁned the projective coordinate of a point P on 2
line, with) reference to the base-points 4, B and unit-point Z, as
thfa"f:%ss-ratio (PE, 4B), and as homogeneous coordinates we
fake two numbers x, ¥ whose ratio |

N x/y=(PE, AB).
The extensions to two and three dimensions are _precisely
similar to one anather.
- In a plane the position of a point is determined by the ratios
of three numbers w, ¥, ¥ (not all zero); any multiple of these
numbers A, ky, kz represent the same point, for all values of &
(not zero). We refer to this shortly as the point (x). A straight
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line is determined by two points (x,), (x,), and on it a point has
one degree of freedom and can be determined by the ratio of two
homogeneous parameters A, u. We assume that the coordinates
of any point on the line are represented by

px =Ax, + pxy,
Py =AY+ Y2,
pE= AZ1 + 2o,

where p is a factor of proportionality, Eliminating p, A, u bes

tween these three equations we obfain an equation in ®, y{&/)

homogencous and of the first degree. Hence a straight lmé is
represented by a linear homogeneous equation. "T'he threeequa-
tions ¥=0, y=0, §=0 represent three straight lines wﬁich'form
a triangle, the triangle of reference or fundamental t‘?’fz:hngfe ARBC.
Tt is essential that these three lines should ha¥e€ no common
point, for if they had then the equation Ix4my+ nz=0 would
represent a line passing through this point and could not re-
present an arbitrary line, O
)

3-65. 'l'o complete the detemﬁ}iﬁtion of the coordinates we
attach to one assigned point, the unit-point £, the coordinates
M, 1, 1. Ve - , '

We can show now ’f.h{at’\cvery point has a definite set of co-
ordinates. Let P=[#{p% 2'] be any point, and let the line PE
cut the sides of theMriangle of reference in L, M, N, Pk is re-
presented by th&patametric cquations

\’\“ pr=x"+1,
:\s..: | Py:yr 4 f,
™3 Pz:zr_'_z,

AN
m\.J -
ﬁﬁd the parameters of P, E, L, M, N areo, ¢, —&', —y', —&
The cross-ratio '
(PE, MN)=(o, wo; —y', -3")=y'[2,
and (PE, LN)=x'[5".
Hence the ratios of the coordinates are determined in terms of
certain cross-ratios. ’

N
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3-66. Similarly in three dimensions a point is represented by
the ratios of four homogeneous coordinates [x, v, 2, e]. A plane
is determined by three points (x,), (&), (x;), and is represented
by parametric equations

px=Ax, + pxs+ vxy, etc.,

or by a homogenecus linear cquation in x, y, 2, «. The four
equatiens x=0, ¥=0, =0, w=0 determine thc tetrahedron

reference. If E=[r, 1, 1, 1] is the unit-point and EP cuts‘the
fundamental planes in L, M, N, K the ratios of the coorditates
are determined by cross-ratios, viz, O

x'fw' ={PE, LK), etc.
, . . N\ :
3-67. Analytically, there is no difficulty g ‘extending this
process to a system of five or more homggeneous coordinates,
Generally, a point is represented by thératios of 41 homo-
geneous coordinates {xg, &y, ..., xﬂ]Al\Jhe is determined by two
points (a), (4), and is represented by parametric equations

P =AM 1D

a plane is determined byffhfeé points (a), (b}, {¢), and is re-
presented by paramete'"c equations

\'\ ’,Qxx =Aa;+ pub; +ve,.

Then a regiox of three dimensions, solid, or flat space, is de-
termined byddur points, and is represented by parametric equa-
tions infelving threc paramecters or the ratios of four homo-
gens@@’parameters. Similarly in the n-dimensional region .S,

thére are flat regions of all dimensions up to #— 1. The figure

.‘\'.fo'l‘mec! of the deterrflining points, triangle, tetrahedron, etc., is
“called in-general a simplex. A single linear homogeneous equa-

tion in the n-+1 coordinates represents a fat space of #—1
dimensions or (n—1)-flat. This, the space of highest dimensions
in the containing space, is also called a prime. Two equations
represent an (n—2)-flat, which is thercfore the intersection of
two (n—1)-flats, and so on. We shall have occasion later to make

use of relations in higher space in the representation of ordinary
spatial relations. .



15£] PROJECTIVE COORDINATES | 63

$-71. We have defined the cross-ratio of four collinear points,
and shown that it is equal to the cross-ratio of the parameters of
the four points. For the other onc-dimensional forms we have
similar relations. Thus for a plane pencil of lines we define the
cross-ratio as equal to that of four collinear points one on each
line. If we take the vertex of thé pencil as 4=z, o, o] and the
transversal as the linc x=o, the lines are represented by equa-
tions y=Az, y=A'%, y=pz, y=p'2, and the points by [o, A, 1],
etc. The parameters of the points are A, X', p, ¢, and the cross-
ratio of the four points, which is equal to that of the four lingsy
is cqual to that of the four parameters (A, pp’) which agelsé
the parameters of the four lines. A\

Similarly for four planes through aline the cross;raﬁo is cqual
to that of the four lines of intersection with any .pl}ﬁe, or of the
four points of intersection with any line, and is equil to the cross-
ratio of the parameters when the planes arg pe:pfcsented by equa-
tions of the form u-Av=o. N\

The fundamental principle at the basigof these determinations
is that if two one-dimensional systems are in (1, 1) corre-
spondence, the cross-ratio of four ¢lements of the one system is
equal to that of the csrrespﬁh‘ding four elements of the other
system, O\

. . imx\
3-72. Polar plan¢ of a point with regard to a tetrahedron,

As an example Of the use of the projective coordinates we shall
prove the fallowing projective theorem.

AIJCD\’i:s\i tetrahedron, and P any point. Let AP cut BCD
in PyNnd similarly define the points Py, Py, P,. The plane
P,PyR, cuts the plane BCD in a line /;; and similarly we define

the lines I, I, Z,. 1hese four lines lic in one plane which is called
the polar plane of P with regard to the tetrahedron,

Let P=[X, Y, Z, W], then P =fo, ¥, Z, W]. The plane
P,P,P, is
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and this cuts =0 where
ZWy+ WYz+ YZw=o0,
i.e. where WY +z/Z+w/W=o,
i.e. where 2/ X+ylY+elZ+w/W=o,
The symmetry of this equation shows that the other three lines
also lie in 1t.

3-81. Transition from projective to metrical geometzry. O\

The system of coordinates which has been establishedyis'a
purely projective one and makes no use of measufernént.
Distances and angles are metrical functions and are, f Weign to
pI‘O_]CC’EIVf: geometry. When the processes of prOJectJ,On areapplied
in euclidean geometry we find that parallel lifesvare projected
into concurrent lines, which intersect on the'“"v'anishincr line™.
Paralielism and concurrency become me{gc’d in the same 1dea,
and this is facilitated by the use of the phtase “pomt at infinity .
The line corresponding to the vamshmg line is the “‘line at
infinity ”. In euclidean geometry, there is one point at infinity
on each line, one line at infigity in, each plane.

Considering now lines through a point O, y=pux, therc are
two lines through O such thit the *“angle” which they determine
with any line of the pﬁnml is independent of p. If one of these
lines is y=Ax wx&mc by the ordinary formula in rectangular
cartesian coordin

.,'\“ t(mg_h_’u___ g“"l E_Il.
A A AT 1A
and this%s independent of u if }k2= —1 and thercforc A= 44

T @ two lines are called the absolute lines through O. If

g=tanfand p’ =tan ' are the parameters of any two lines through

L0, the cross-ratio of this pair and the two absolute lincs is

\‘;

tanf—¢ tanf’ —i

L’;-Z- Y ) =gl i
oo #7385 =) tanf 44/ tanf' 57
Now tanf—7_ _cosf+ sind
tanf 41 cosf—7sind '
Hence (p, Ju"; 7 —-;'):e‘ai{ﬁ—{}'),

and therefore 6”~—8=%log(p, W g, —2).
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This formula, due to Laguerre, expresses the angle between two
iincs in terms of a cross-ratio, We have therefore a means of re-
ducing angular measurcments to projective relations, There is
a marked difference between the pencil of lines and the range of
points, for in the latter there is only one special element, the
point at infinity, while in the former there arc two, the two .
absolute lines. We are led therefore to consider the metrical
geometry on a line as specialised by the coalescing of two points.
When we replace the single point at infinity by two, we obtain
the more general non-euclidean geometry of which euclideart.. )
geometry is a limiting case. ‘ O

3-82. Distance in metrical geometry of one dimens,ifoﬁ‘.’

In the general metrical seometry we begin by assﬁsﬁing that
on any line there are two special points, X, ¥, thé\points at in-
finity. Distance must be defined so that the dsstance of any
finite point from either X or Y is infinite,and, if P, O, R are
threc points on a line, PO+ QR=PRMWe have three cross-
ratios (£°Q, XY), (QR, XY) and (PR A Y); and

(PO, XY).(QR, X¥J=(PR, X ).
Ilence log(F’Q, XY)+log(QRMXY)=log(PR, XY),
The function ¢ logi(RO, XY),
where ¢ is some conqtant glerefore satisfies the required con-
ditions, since (PX, X 15&}_ o, (X, XY)=o0, and the logarithm
of each of these is, mﬁmt(,’*‘

# Ta show that N the only expression which can represent the distance
we observe first/2hit the distance OP is some function of the cross-ratio
((IP, XY=« &Aj {(OP)=F (x). Let 2 be another point on the line OP,
and let (DX Y)=y. Then since (OF, XY).(PQ, XY)=(0Q, XY),
(FQ, X Y)‘“ylx-

\TQV\ (OP)+ (PQ)=(0Q},
forefore FR=f ) —Fix).
Differentiating partially with respect to x and », we have
P
rw=Lr () wd ro=ir2),
hence . af ()= (v)=c, say.
Thercfore . Fd= j dx=clogx+C.

But (OO)=0 and (00, XY)=1, therefore f (1)=c and C=o,
BAG 5
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In euclidean geometry the twopoints X, ¥ coincide; (PQ, XY}
becomes =1 and its logarithm is zero. The expression for the
distance can, however, be obtained as a finite limiting expression
" by supposing that, as Y- X, ¢+ c0 in some way.
Let the parameters of P, O, X and Y be p, ¢, oo and !
where e 0. Then

(PO, XY):;':E

S (1= (1 pe)= 1 (p=g)e,

N
neglecting €%, Then R
log(PQ, XY)=(p—q)e. R\
Let Lim ce= — 1, then we obtain « \J
e—r«{) 3

~ distance (PQy=¢~ 5, ’“" ™
and, if O is the point corresponding to thc\p\aramc’v o, the
distance (OP)=p.
In euclidean geometry then the meQ\u:al expression jor the
cross-ratio of four points

v (PR) (OR
(PO, RSy=(pg, ) p 3/4 (ps;.f' %Qb?

§

3 83 Dlstance in two dlmensmns

In two dimensions théiocus of points at infinity is a curve of
the second crder argnic, and is represented by an equation of
the second degre€ m\ the coordinates. In euclidean geometry,
since the two ﬁq\rﬂts at infinity on any line coincide, the conic
degenf:rates t0~ two coincident lines. Take this line as x=0 and

. _:"\1~ o
AN °‘\ )

Fig. 19

two conjugate lines through its pole O as the other sides of the
triangle of reference, then, with proper choice of unit-point, the
equation of the conic can be written

—et(xt 439 2t=0,
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where e > 0. Let P=[x, 3', 2’} be any point and let OP cut the
conic in U and V. Then

dist. {OP)=clog(OP, UV).
Parametric equations of OF are -
pr=ux", py=y', ps=x"+1
Substituting in the equation of the conic we have
g2zt —eB (8243 )+ 2" =0,

The parameters of O, P, U, V are o0, 0, 1, 1,, where b, %ar
the roots of this quadratic equation. g

The crogs-ratio A\
(OP, UVy=(0 0, tyt) =tyfty.
Write e(x't %) =R v
¥ ) \.:
then f_z +R ¢t '\.\
tl R.‘ En ! ,Nx\

. and  log{OP, UV)=log{1 + Rz’ —~I@0(I - Rlz"Y=2R{z,
Choose ¢ so that Lim 2¢e=1, thm
e—-i) &N

dist. (OP)= ot 2ce (%2492
ANe—+1

O =Gk
where < oa= &z, y=y'[a".

384 The atié;o!iue.

Foran léB, Since there are two special or absolutelines through
cach p nt“ ‘the assemblage of absolute lines is a curve of the
seuonﬁg\ﬁass or conic-envelope. The angle between two lines is
4,(0.011]} in two cases: either the lines themselves coincide or the

,\'"‘te;wé absolute lines through their point of intersection coincide,
Tdentifying the iatter case with the case of parallelism, when the
point of intersection is a point at infinity, we find that the conic-
locus of points at infinity and the conic-envelope of absolute
lines form one and the same figure. This is called the Absolute.
In euclidean geometry when the conic-locus degenerates to two
coincident straight lines (the line at infinity) the conic-envelope
hecomes a pair of imaginary points on this line {the circular

5-2
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points at infinity). In euclidean gecometry of three dimensions
we shall find that the absolute figure is a pair of coincident planes
(the plane at infinity) and a conic in this planc (the circle at
infinity).

3-85. Metrical coordinates, Formetrical geometry the most
convenient coordinates are rectangular cartesians, but a system
hased, like projective coordinates, on a tetrahedron of reference,
is sometimes useful. We may derive from the projective systém
the metrical meanings to be attached to the coordinates. a

Let P=[x, %, 2, w], E={1, 1, 1, 1], and let PE cut thé Mizda-
mental planes x=o, etc., in Ll, L,, Ly, Loy Then (3:00)

PL, .EL, k‘“
IU@/LL;W\
using the metrical value of the cross-ratio,

Draw PP, and EE, pérpendicular tohe/plane x=o, and PP,
and EFE, perpendicular to the plane .~

=0. Then P\% B T
PL, PP, PL, PP, %\ '
EL, EE’ EL, EEfN
x PP, PP 3%
Eﬁ/ﬁ&’
and therefore .i”t
pp N\
BBy w=kpp,
where k,{s Some constant; and similarly

N\ _ . PP, PP,
,\\‘. - yﬁkf};’ M—kL,Ea

S =(PE, L L)=

Hence

=k

Henee the coordinates are certain multiples of the distances of
JP from the fundamental planes,

3-851, When the unit-point E is the centre of the inscribed
sphere of the tetrahedron, so that

. EE1=EE2‘:EE3=EE4,
the coordinates x, ¥, 2, w are proportional to the distances of P
from the fundamental planes. These are analogous to trilinear

coordinates in a plane and may be called guadriplanar co-
ardinates,
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3:832. If F is the centroid of the tetrahedron, and A4,, 4,,
A;, A, denote the areas of the faces,
A EE =4, FEE,= A4, FE,= A4, FE,.
Then x=k".PP.A,, etc.,
and the coordinates are proportional to the volumes of the tetra-

hedra PDBC, PDCA, PDARB, PABC. These are analogous to
areal coordinates, and may be called volume-coordinates.

8-853. If masses my, m,, my, 1, are placed at the vertices andA
if P is the centre of mass, then if d and p denote the dlstanceq\o?
P’ and A4 from the plane BCD, we have

oy —dSm, and > vol PDBC _d_m_ 073

A

Hence my, #,, #1y, 1, are_propomonal to the volume-coordinates. '

From this point of view they are called barygeniric coordinates.

3-86. In the thcorem of 352 if Pis the“oenlroid of the tetra-
hedromn, the planes £, 2, P,, ete., are parallel to the corresponding
faces of the tetrahedron, hence the polar plane of the centroid is
the plane at infinity. Hence in bar} centric coordinates, the
centroid being {1, 1, 1, 1] the equatlon of the plane at infinity is

s &Mz +w=o.
It is often most comvcnient to specify the particular system
of metrical coordinates by the cquation of the plane at infinity,
Ex. Show thar}ff m, u, p represent the volumes of the tetrahedra

EDBRC, EDCAVEDAR, LABC E being the unit- pomt the equation
of the pla%é}t 1nfinity is

Ix+my+nz+puw=o.

ad

3 961 General homogeneous coordinates, referred to a
\ﬁuﬁdamentdl tetrahedron, are not usually the most convenient
for metrical geometry, but are used mostly in projective geo-
metry. The simplest metrical system is obtained by taking the
plane at infinity itself as one of the fundamental planes w=o,
and this leads at once to cartesian coordinates, the opposite
vertex of the tetrahedron being the origin, and the edges through
that point the coordinatc-axes.
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. 391, Analytical representation of a homography.

The general homography on a line is represented by  linear
transformation. The parareters ¢, ' of corresponding points
P, P’ are connected by a bilinear equation

att’ + bt+ct’ +d=o.
“The double- -points of the homography are then Teprosc ted by
the roots of the quadratic

at*+(b+cjt+d=o.

The homography is an involution if the eqmtmn is sy m‘w\cﬁ ical
in ¢t e if b=c. O

'\

R
™

3-92. An involution is determmed by two paips of PO
Let the paramcters of the two pairs b€’ \he roots of the
guadratic equations \
@ 12+ 2l L+ by =0y
' aotz—t-zkzi—l—b";éo
If the double-points are the roots of the quadratic
A +.2Ht+ B=o,
then, since the double-pgints are harmonic conjugates with re-
gard to each pair, werhave (3-321)
i\b —sh H+a,B=0,
and ' \\ by -2k H4-a,B=o0.
These two eq&atlom deterrmne unlquely the ratios

A\zﬂ B= a— o) 3 (@b 01  (fy by — Ry by).
Qne ‘Condition that the double- pomts should be rcal is

. (@b, —3251) 4(&1}: a,zh)(klbzn-kg 1) >0,
\ wh.lch reduces to Ci2—C, Cp> 0,

'"\

\ If the two pairs are both real this is the condition that their
cross-ratio should be positive (3'325). If one or both of the pairs
be imaginary the double-points must be real since in a harmonic
range one pair at least must be real (3-322).

Hence for an involution determined by two pairs

8921, If both pairs arereal, the involution is elliptic ov hyperbolic
according as the cross-ratio of the two pairs is negative or positive,
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3:922. If one pair al least is fmaginary, the imuolution is
Eyperbolic.
An elliptic involution contains no conjugate imaginary pairs.

393, Two involutions on the same line have a unique common
pair of elements.

This is proved in 3-92, considering the first two quadratics
as determining the double-points of the two involutions, and the
third the pair of common elements,

iience the common elements of two involutions ave veal if one at s
least of the involutions is elliptic; if both are hyperbolic, the commah,™
elements are veal ov imaginary according as the cvoss-ratio of e
frva pairs of double-poinis is positive or negalive. - R

3-95. EXAMPLES. \‘
. 1. PP, P, P,is a skew quadrilateral, and a plang\Cuts the sides
P 7y, etc., in the ratios By, 1, etc. Prove thei;t\ ’
by Rygkssfen = 1. Q‘\

2. A planc cuts the six edges of a tctmhedron A A, 4,4, 1n
six points Py, etc., and Oy, is thel Barmonic conjugate of Py,
with respect to A; and 4,, g *Show that the six planes
O, A,, etc,, have a point in" common.

3. A plane cuts the 81de~s P, P,, etc., of a skew quadrilateral
P\ P, PP, in points F \ctc and (,, is the harmonic conjugate
of Py, with I‘CSpCLt tell25 and P,, etc. Show that Oy, s, Oy, 0,
are coplanar. ‘.\ s
4. Show thst"the tetrahedron whose faces are ¥y — 2 +2w=o0,
X—4%-- b, —x+4y+w=0, —2x+y+z=0is both circum-
sc1ibnd :.% inscribed to the tetrahedron of reference.
5 *%how that the tetrahedron whose vertices are [0, —3, ¢, p],
07 —¢, gl, [—a, b, 0, 7], [ap, bq, cr, 6] is both inscribed and
cifcumseribed to the tetrahedron of reference.

6. Show that the tetrahedron whosc faces are
—mry+ngz+w=0, Fx—upz+w=0,
—lgxtmpy+w=o0, Ix+my+ns=0

is both inscribed and circumscribed to the tetrahedron of
reference, '
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. 7. Show that the tetrahedron whose faces are — v+ x4 pw=o,
x—z+qw=0, —x+y+rw=0, px+q¢v+rz=01is boih inscribed
and circumscribed to the tetrahedron of reference.

8. Show that the product of the cross-ratios of the points in
which four lines are cut by their two transversals is
Py 1701 Py
where the factors are the mutual moments of the lines takean '
pairs.
Consider the equation O\
(g 1y )"+ (g 03" + (Mg 113 )" = 0, L O
and show that it is true (i) for #=1 when the tragsvorsals coin-
cide, (if) for #=1 when the four lines are tafgbnts of a cubic
curve. Give an interpretation for the case n=y’
N ,'@iath' Trip. 11, 1913.)
9. Examine the figure of two mu‘tu\jaﬁ}r inscribed tetrahedra;
and show that any one of the eight°\¢énditions (making a vertex
of one lie on a face of the otheg\is a consequence of the rest.
What plane theorem is obtaincd by taking an arbitrary plane
section of the tetrahedra? jSﬁc')w that a plane figure can be drawn
in which 44’, BB, Q6! are three lines, and the bisectors at 4
of the angles subtended by BB’ and €€’ are the same; and
similarly for all th “6ther points. (Math. Trip. 11, 1913.)

10. Aée‘g.of..Collinear points P, P,, P,,..., P, are obtained by
projecting'ffom a point a set of collinear points which are spaced
at equalinfervals. Find the coordinates of P, in terms of those
of 1’3%,;132, Py, and find the limiting position of P, when # is large.
‘ (Math. Trip. II, 1914.)

N s (?I—-I)xzx£2ﬂ_—2) Xgy + (7 — 3) a2

xﬂ:-—-—- _ -

m—1)x—2(n—2) Xp(n—13) &y

11. From a variablepoint Pin one fixed plane a transversal is
drawn to two fixed straight lines in space and produced to meet
another fixed plane in ', Find in the simplest form the relation
cti)nnectjng the positions of the points P, P’ in their respective
planes.

If ABC, A'2'C’ be triangles in two different planes such that
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BC passes through 4', and B'C” passes through 4, and variable
points P, /7 in these planes be related by the fact that PP
‘ntersects BR' and CC, find geometrically the locus of P,
(i) when P is on a straight line passing through A or B, (ii) when
Pis on BC or CA, (iii) when P is on 2 conic circumscribed to
ABC, (iv) when P is on any conic in the plane ABC,

(Math. 'U'rip. 11, 1915.)

Ans, Taking ABC and A'B’'C” as triangles of reference,

P=[X,Y,Z],P'=[X,Y,Z],then XX":YY":4Z = pigr. (i) AN

straight line through A’ or B’ respectively, (1) 'I'he points, @%
a_nd i rcspectively, (iii) A straight Jine, {iv) A quartic curve yith
double-points at 4, B, C". : N

2. Show that it is possible to choose a tetrabedron of
reference so that the vertices of a hexahedrong which is the
projection of a parallelepiped, may have’ the coordinates
. R e .’ V4
() [x1, +1, 21, 11, (ii) [1, 0, 0, 0], [oxie, ©], [0, 0, 3, Ol
[o,0,0,1),[-1,1,1,7],{1, =1, 1, 1], [{;';i; —1,1],[1,1,1, —1].

»
N/

Q
o)
\\
o »
7 N/
P,
N
5"\.‘ v
AW

~



CHAPTER IV
THE SPHERE

4-1. A sphere is the locus of a point which is at a constant
distance % from a fixed point, the centre. If the rectangular co--
ordinates of the centre are [X, ¥, Z] the equation of the sphereds

(#=XP+(y-YPr(z—Zp=Fk. O

This is an equation of the second degree and is charaggeyiscd by

. two propertics: S\

(1) The coefficients of &%, 32, 2 are all equal {2
2) The cocflicients of yz, zx, xy are all zer’ﬁ;\i.e. there are no
: Y% &x, Xy ;

preduct terms,

N

4-11. The general equation of‘.tlfxfc"’second degree which
satisfies these conditions may be written
ax®+ ay®+ qz®+ zp,x} ;égy+ 2rz+d=o0.
If 2# 0 we may write thisvli.p" the form
(w4 D[0P+ + @ (2 7faf= (54 g2 4 72— ad) e,
and comparing this, v@ith {4-1) we see that it represents a spherc

with centre [ - pfdn—g/a, —r/a] and radius (> +¢*+ 12— ad)}ju.
The radius isisal provided p2-+g2 472~ gd > o,

If - ANV P+ 4+ —ad<o,
the radiu} 1s imaginary, and we call it a virtual spheve,
If AN PP +ri=aqd,

__ ’“\tI;’e radius is zero, and we cail it a point-sphere,

. }
\\ -
\ ) 3

412. If a=o the equation reduces to

2px+29y+arat+d=o,

which is no longer of the second degree and represents a plane.

Now a !ocus whose equation is of the second degree has the
geometrical property that it is cut by an arbitrary straight line in
two points, while a plane is cut in only one point. The apparent
discrepancy is explained when we use homogeneous coordinates.
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If we write x/w, yfw and z/w for x, y and 2, the equation of the
sphere becomes
ax®+ ay? + ax®+ 2pxw + 2qyw -+ 2rzw + dut =0,
and when a=o0 we have
w(2px+2qy + 212+ dw)=o.
The: complete locus therefore consists of the plane
2pxt+2gy+2retdw=o0,
together with the plane at infinity w=o0. As a0 the radius,of )
the sphere 0o, and the centre tends to infinity. We may siy
roughly that the parts of the sphere in the neighbourhopdiof the
plane flatten out on to this plane, while the farther pagis of the
- . A\
sphere recede to infinity. : o

4% Power of a poiat with regard to a sphere.

If P is a fixed point and PUV a variabile'fine cutting a fixed
sphere in U, V, it is easily seen by elefentary geometry that the
product PU, PV is constant; this gdpstant is called the power of
P with regard to the sphere. If ks the radius of the sphere, and
d the distance of P from the egntre, the power of P is

NG R
or if P=[x, v, &] ando\ tﬁgequation of the sphere is
S= 84 y2+ 22+ 2pa+2qy+272+6=0,
“then the powefof P is equal to 5.

421, ’S\’:ig‘"positive or negative. according as P’ is outside or
inside the-dphere, zero when P lies on the sphere. For a point-
sphexawwith centre C it reduces to CP%

A~ 4-22. As the sphere tends to a planc, the radius tending to
\i?lﬁnity, the power of a point in general —co, but there 1s
another quantity which remains finite in this case. Let J_PUV
pass through the centre C, and Jet.C tend to infinity while U
remains fixed. Then

S=PU.PV=PUPU+zh),

and the ratio gzj’U (Ekg_i— 2)—;- 2PU.
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Analytically, if

aS=a(x*+y*+ %) F2px+ 2y +2re + d,

k=(p*+q@*+r2—ad)/a.
S a(x? -]—;v.2 +2%) +2px +2gy+ 2rz-d
k (PP + g+ —ad)
2px+2gqy+orstd
- p(;gf;,z_l_rg);; as a—o
=twice the distance of P from the plane, O\
4-3. A sphere is completely determined by four pqi];t\st' Let
x2+y2+zz+2px+2qy+2rz+d=o(572: )

be the equation of the sphere through the fog&}ibints (), (),
(%), (%), Then &
' x? it R2F2pr + 2y, a2+ d=o
and three other similar equations. 'E{i’minating P, g, v and 4
we have \/

Then

N\

v

—

| &+ 422 x99 = i
| A
RS E AN N

g4 yﬁﬁ+‘z}' Ty Yo E 1 !
as the equation of th€ sphere through the four points.
) '

4-81. The coridition that the sphere should pass through five
given points ig\fouind by substituting in this equation the co-
ordinates of(#he fifth point (x,). This condition may be trans-
formed as\ollows. We may write it in either of the forms:

O PEyPta® ow oy oz o1 i=0,

N IR an om o

&

A
m\.er
T2k —ays -2z al4oyi4oa®
Multiply together these two determinants by rows. Taking row ¢

of the first determinant with row J of the second we get the
element :

BEFYS RS =230 2y~ 22 a2y 2 2
={®—% )+ (3~ y, ) + (#i~ 2,2 =d;%
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where d;; denotes the distance between the points (x,) and (x5},
d.. being =o. Hence the condition that five points should lie on
a sphere is represented by
lo 4. df dP d5 =0
dy® © dit A Ayt
dy? dy® O dy® dy’
dy® dp* dg® o dis*

2 dg? - G ds® o O
The corresponding relation in two dimenslons, or the conditiong™,
that four points should lie on a circle, viz. N e/
1o digt digt A | =0 {Jf’:"'
dy® © dy®  doy’ 2 \~ ‘
dy® dy? o s’ N QI\
‘ du® dy® dg® © )

is eq.un-‘alent 00 godyy+ dygdyt dye d:m? 3.“
and represents the Theorem of Ptolemgy ™

4-41. A circle is the intersectio;;{oﬁ. sphere and a plane. The
equations of a circle can therefore be given by the equations of
a sphere and a plane togetber.™

R ‘

Ex. 1. Find the equaticins,\of the circle through the points [4, o, 0},
[e, &, 2], [0, 0, €]. \ Nl )

"I'he equation of fhe plane through these points is

) 7 latytsfc=1.
Let the equaﬁéﬁ'ﬂf a sphere through the three points be
Y
A4 X1yt A%+ 2pa+2gy T 218 +d =0

Thef&l’;\ L @@+zpatd=o0,
,\3:\, B +2¢b+d=o,
\ : 2+ 2rct+d=o.

We may give d any value, say o, and then determine
p=—a, 20= —b, 2r=-—¢.
Hence the equations of the circle are
xja+ylb+zfe=1,
attyi4ai=axntby et
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Ex. 2. Tind the equations of the circle with centre [X, ¥, Z],
radius %, and axis (the line through the centre perpendicular to its
plane) in the dircction [{, m, #].

Ans, (5 Xt (3= Y2k (= 2= Y,
- X)+miy~Y)+n(x—Z)=o0,
4-42, Intersection of two or more spheres,
4-421. Consider the two spheres
S =x24 92+ 22+ 2px+ 29y + 272+ d=0,
S'=x24 32+ 22 +op'w+2gy+2rs +d =o.

N .
KQ

N\

‘The coordinates of all the points of intersection satiaf¥hoth of -

thesc equations and therefore also satisfy the equafi(')'fi
S—S'E2(p—p’)x+2(9—9’)y+2(1‘—?”)3-&}{3—;1")::0.

The curve of intersection is therefore a circkying in this plane.

This plane is called the radical plane of £he two spheres, and is

the locus of points which have the sange power with respect to

the two spheres; it is perpendicular €9the linc joining the centres.
4-422. Three spheres S,, S ;;S3 have three radical planes

when taken in pairs. ‘Their equations may be written

S;—S5=0, $—S,=0, $;—8,—0.

Since (S =8+ (8:— S+ (S, - Sp) =0,

the three planes have a line in common. This line is called the

radical axis of the three spheres. ‘

4423, Si‘rﬁifarly four spheres have six radical planes and four
radical d¥es, and these planes and axes all pass through one
poim\\which is called the radical centre of the four spheres.

4443, Angle of intersection of two spheres,

\.» The angle of intersection of two spheres at a common point is

the angle between the tangent-planes to the spheres at that point,
and, as the tangent-planes are perpendicular to the radii, it is
equal to the angle between the radii, If C, (7 are the centres,
and P, P’ two common points, the triangles C'C'Pand CCY P’ are
congruent, hence at all common points the angte of intersection

is the same. If this angle is.a right angle the spheres are said to
be orthogonal. .
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4-431. Condition that two spheres should be orthogonal.
The geometrical condition is CP2 4+ C"P*=CC"%. Hence

(p=p P +g—g P+ -r)P=(p+*+r*-d}
+(pPHg 2+t dY),

ie. 2pp’ +2g¢’ + 27" —(d+d)=o0.

The left-hand side of this equation is the bilinear symmetrical

expression in p, g, #, d and p', ¢, ¥, &’ which reduces to

2(p*+ ¢ +1" - d)

when (he spheres coincide. . ¢\

If 8 is the angle of intersection in the gencral case X
CCr=CP2+CPP—2CP.C'Poos . ™
{ence 2kE cos f=2pp' +2q¢" +2rr' —(d + d');'\a"

Ex. A& point-sphere is self-orthogonal.

4-432. Sphere orthogonal to four giveg:g;fﬂaéres.

Since the relation of orthogonality isJingar in the coefficients
of each sphere, four such relations configcting the coefficients of
a sphere will uniquely determine it Since the tangents from the
centre of the orthogonal spherg 't cach of the four spheres are
also its radii, the centre has th’q'sa(me power with respect to each
of the four spheres and.ds, therefore the radical centre. The
orthogonal sphere vn]ibe real unless the radical centre lies
within cach of the given spheres.

If S,= 243200+ 2p, 0+ 2qy+ 2z tdi=0 (1=1,23, 4)
represent the biven spheres, and .

PN "Ex2+y2+z‘2+sz+zgy+m+ d=o
their'@égonal sphere, we have. :

N 2ppaggtanr—d—di=0 (i=1,2 3 4):

”‘Thté equation of the orthogonal sphere is obtained by eliminating
#, g, , d between these five equations.

4-5. Pole and polar with respect to a sphere.

Let P=[x', y', '] be a fixed point, and draw any line through
Pcutting the spherein U, V. Then the locus Of.Q.E [%, ¥, =], t.he:
harmonic conjugate of P with respect to U, V, is a plane, which
is called the polar plane of P with respect 10 the sphere. Letthe
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position-ratio of Uwith respect to P, ) be A, Then the coordinates
of U are (Ax"+ x){(A+ 1), etc. Substituting in the equation of the
sphere, .
S=x*+32+ 20+ 2px+2qy+2rz+d=o,
we have
(A + 2+ (" + )2+ (A2’ + 2)2 4+ 2{p(Ax’ +x)
Fgy + P+ £ 2 A1)+ d(A+ 1) =0,
or, rearranging, QO
SNt 2{wx’ +yy’ +22 +p(x+x)+g(y+y) .\\’
+r(at )+ A+ S =00 '
This is a quadratic in A, the roots of which, A, ahd W,, are the

position-ratios of Uand V. If (UV, PO) is hclKI‘ﬁOIllC, A== — Ay,
hence

xx'+yy 425 +p(x+x’)+q(y+yf{wb’r(z+z’)-}-dzo_,
or (x’+P)x+(y’+g)y+(2’+T)a+(§~\;"’+gy'+?‘z’+d}:0=
"This is the equation of the polar plane of [x’, ¥, z] which is
therefore perpendicular to the Hiné joining P=[¥, y', '] to the
centre [—p, —gq, —7]. W}Lén» P lies on the surface the polar-
plane passes through P afid becomes the tangmt-plane at P,
With: hemogeneou&coordmates the equation of the polar may
be written in the ﬁol-}n

\\as 0S , [0S 85 _
o TV gy SRR T
4-51, If ale spheres S, and S, are orthogonal the polar plane
of any\pomt Pon S, with respect to .S, passes through the other
end\\af ‘the diameter of ., thmunrh P,

wLet Si=a+yi4xi-k=o,
:"\.' '

Sy=a2+9%+ 2%+ 2px -t 2qy + v+ A2=0,
Let P=[«, 3, 2] be any point on ,, so that
AR SRS )
Its polar plane with respect to S, is '
KXy Y+ 2+ plat+x)+q(y+y) +r(x+2)+E=0,
and this equation is satisfied by

[x’ ¥, 2]:[——;\1', "'y" '_2’]‘
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If S;, Sy, Ss S, are four given spheres, their orthogonal
sphere is therefore the locus of points P whose polar planes pass
through a common point, the other end of the diameter of the
orthogonal sphere through P, Hence the equation of the ortho-
gonal sphere is
05, @5, 25 05,

ox oy 0z ow
.|
|

=0,

08, 9S, 85, 23S,
ox dy 0dr ow
0S; 08, 95y 08,
9 dy 3z ow
08, 85, o5, 085,
dx 9y ez ow R

This detcrminant is called the Yacobian of the fourhémogeneous
functions 8, S;, Ss, Su, and the locus is called*the Jacobian
locus of the four spheres. It appcars to be of the fourth degree,
but %2 is a factor®, hence the complete Jacebian consists of the
orthogonal sphere together with the plang'at infinity taken twice,

4-5. Linear systems of spheresi® )
461, If §,, S, are two spheres,
. S, =0
represents, for all valdes of A, a sphere through their circle of
interscction. For A&)~1 it reduces to the radical plane of the
two spheres, anthdify two spheres of the system have the same
radical planc. ks system is called a pencil or linear one-parameter

system of ’%}}Eiés; it is called also a coaxial systemn.
Writingthe equation in full we have

EFN(E Y+ 2)+2(pr+ M) 2 +2(qHAg)Y
U da(n+d)z+(d+Ad)=o.
Hence the homogeneous coordinates of the centre are

(D1 + A, 9‘1‘1“)‘5"2’. nt A, —(1+4A)

* Putting w= o the first three columns of the determinant become identical,
except for & factor, hence =f is a factor, Geometrically, the polar of a point
at infinity is the diametral plane perpendicular to the given direction. Hence
the plane at infinity is part of the Jacobian locus since the polars of any
Elven point at infinity are parallcl and have a line at infinity in common,

BAG 6
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and the locus of the centre is a straight line perpendicular to the

~ radical plane.

Taking the radical plane as the plane of yz and the line of

centres as axis of x we have ¢, =0=g¢,, r,=0=r;, d,=d,=£, say.
Then putting (p;+ Apo){(1+A)= — g, the equation of the system
becomes x4y e —2px+ k=o,
or (x—p)2+ 2 Ft=p k.
If 23> o the radius of the sphere becomes zero whent o= —r\/fe
Hence in this case the system contains two point-sphgicdy these
are called the Lmiting-points of the systemn, In thify*case the
radical plane cuts the spheres in a virtual circlessy

If k<o there are no real point-spheres, the/finimum radius,

for p=o, being V' —; and the common ur(?Ie of the system is
real.

If §is a sphere cutting ortho n}}[h two spheres of the
2ppyt2gq, + = d+d;,

2pPy T 290G 21y =d +dy,
then N

2p(pr+Ape) +2q(0 +)\q‘2)+ 2r (1 M) = (1 + N d + (dy + M),
and therefore S c1\ts" orthogonally every sphere of the system.
4-62, If S %s orthogonally the sphere
Ke Xyt —2dxt+ k=0,
we have\&/ 2dp+d4+-k=o0,
Whl&ﬁ\s satisfied identically if ' p=o0 and d= —k. Hencc the

: eQuatwn of a sphere cutting orthogonally cvery sphere of the
A\ \one-parameter systemi 1s

+yitatozpy—avr—k=o0, :
which represcnts a linear two-parameter system. The spheres of
this system have a common radical axis y=o, z=o0, and pass
through two fixed points { +4/%, o, ©) which are rcal when >0,
i.e, when the common circle of the first system is virtual. If.
k<0, the common peints are imaginary, but there is a real locus
of point-spheres. Writing the equation in the form

X+ (y=p)it (3 =)= pd 24 &,
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the radius =o when p?402= —%, Hence the locus of point-
spheres is the common circle of the first system.

It Sy, S, Ss are three spheres, the equation

S1+AS+ 1S, =0

represents a linear two-parameter system, which is thus de-
terinined by three spheres. Any two spheres of the system
determine a pencil of spheres which is contained in the two-
paranieter system and the limiting-points of the pencil are
puint-spheres of both systems. Hence in order that the two-
parameter system should have imaginary point-spheres everg ™)
pair of spheres of the system must have real intersection ; all the
spheres then pass through two real cemmen polnts. If“miy‘one
pair of spheres have imaginary intersection the onespapameter
systeir determined by thes:%as real limiting-points and the
two-parameter system has a real circle of poi’nt-\spheres.

488, Lastly, if Sy, S,, 83, S, are four 5}({1&}35, the equation

8+ ASy+ pSs+vSe=p’

represents a linear three-parameter"syéic'z'n. There is one sphere
8 which cuts the four spheres arthogonally, and then every
sphere of the system will cutj&drthogonally: A hinear three-
parameter system is thus a.gpstem cutting a fixed sphere ortho-
gonally. The system has¢@gommon radical centre, the centre of
the orthogonal spheré,sand this sphere is the locus of point-
spheres of the sy§tem. If the equation of the orthogonal
sphere is P\ x3+j2+zz=k o
the equati(;n;tc} a sphere cnutting this orthogonally is

O x4yt atyadxd2pytavs+k=o.

*

PN ¥. Prove that the condition that the sphere Sy should cut the
{'}")‘l&}&rc S, in a great circle is

2 (Prpat Gige+rite) —di—dy=2Rs%.
Ex. 2. If the sphere § cuts orthogonallythe sphere x*+ V2 g2=k,

show that it cuts the sphere a2-+32+ 2%+ k=0 in a great circle.

Ex. 3. If the common orthogonal sphere of a three-parameter
system is virtual, show that every sphere of the system cuts a cerain
fixed sphere in great circles.- :

T 6-2
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4-64, If the coefficients of the equation of a sphere catisfy an
equation of the first degree a linear system of spheres is deter-
mined. Let the coefficients p, ¢, #, d be connected by the equation

Ap+Bg+ Cr+Dd+E=o.
Then, comparing this with the equation
2p'ptzg’qgterr—d—d =o,
we see that the general linear equation connecting the cosllicients
expresses that the sphere cuts orthogonally the {ixed sphere{’™
D(x?+y*+2¥)—Ax—By—Cz+ L=o. O\

A single equation thus represcnts a threc-parameter §78tem. A
sphere in general has four degrees of freedom. Two pciy;iiions de-
termine a two-parameter system, three equations efe-parameter
system, while four equations determine the spf:}e\re corapletely.

4-7, Inversion in a sphere, ' O

Let S be a fixed sphere with centre (F@nd radius k, and P any
point. Then if P’ lies on OF and QP;\OP’z k2, P’ is called the
inverse of P with respect to the given sphere.

Let the equation of the fixedisphere be

' x° ji’—;jif%- 2=k

H.Hd P= [.’X-‘, Yy z]) P= [‘x""y?I 2’:[, then

Ay _y x
N\ x 'y =
and ANy 2 (a2 2 ) =R
{7 . r ' 2 ro, 2y ot
Hence (No=? =% = ; k ¥y
7.\ ¥ x x+yres? k2

NV . ; . .
Thsge,, are the equations of the transformation of inversion.

\&T71. The inverse of a spheve is in geneval a sphere.

/% The equation

N
%
\ )

. %2 +92 4284 opxt2gy+2r2+d=0
ecomes o ' C e
T e o 2'?)_%7-}-93: —]—?’.!3‘_ k*+d=o,
A B A o C S B

i.e. d(x:2+.yrz+z!2)+zkz(Pxf_i_gyr_l_Tzf)_i_kd-io’
which represents a sphere with centre

[—pk3d, —qk?d, —rk¥/d]
and radius =R+ ¢+ —d)iid.
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If d=o, i.c. if the given sphere passes through the origin, the
inverse is a plane P gy +re + 30 —o0,
which is perpendicular to the line joining O to the centre
{—p, —g, —7] of the sphere.
The inverse of a circle, which is the intersection of twospheres,
is again a circle,

4-72. Invariance of angles under inversion.

Let U, and U, denote two surfaces and P a point on their
curve of intersection, and let L, and L, denote the tangent-plancs
at P. 'I'he angle between the surfaces is equal to the dihedtal
angle between these plancs. The inverses of the two pla;‘ié's;"are
sphieres Sy’ and .S, passing through O and having theif tangent-
plancs at O parallel respectively to L; and L,. Algejthe inverse
surfaces U,” and Uy into which Uy and U, ar®'transformed
touch S, and S, respectively at the inverse oint /. Hence the
angle between Uy and Uy at P’ is equal taths angle between the
spheres S;" and S, at " or at O, and ,@s: therefore equal to the
angle between L, and L,. .'f":"

4-73. Stereographic proj ecti‘(')ii,’ ’

If S is a sphere through Q4ts inverse is a plane parallel to the
tangent-plane at 0. The im'érse of a point P on the sphere is the
point P’ on the plane sush that O, P, P’ are collinear. Thus P’
is the projection of Pyon this fixed plane. This transformation
between a sphere @nd a plane is called sterengraphic projection,
and, as it is a/particular case of inversion, circles on the sphere
arce transf(}&fn}ﬁ[ into circles on the plane, and angles are unaltered.

Ex. If',?-’ =[x, ¥, %, %] is any point on the sphere £% + 3% +{z —rf =+
and [#%%"] the coordinates of its projection on x=o0 from the centre
{K:“o, *2r], show that =42,
Ay =47%",

Az =zr (2 4+ 3%,
Ap=x"2 4 v 4 gk
{The stereographic projection can be regarded as a plane representa-

tion of the sphere, and thesc equations represent freedom-equations
of the sphere with the parameters &', ')

N

WA
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4-74. Tnversion is a birational, quadratic, point-transforma-
tion, i.e. points are transformed into points, a plane is trans-
formed into a locus of the second order, and the cquations of
transformation arc rational in both sets of coordinates, both
when (x, ¥, 2) are expressed In terms of (x', 3/, 2') an:l 2/ve versa.
It is also said to be conformal since angles are unaltered; and
further it is called a spherical transformation, since sphores are
transformed into spheres. Q"

There are two other ways in which the transformation DAY be
defined, which bring out more particularly the two L‘l&m\,‘tpro-

perties (1} that it is birational, (2} that it transforms qp’\c ¢85 into

spheres. O3

(1) Let S be a fixed sphere, centre O, and lgt\P be any point.
Then the inverse of P is the point of intersegtion of Q7 with the.
polar of P with respect to the sphere. Y

(2) With the same data, the sperL S\t‘ogether with the point-
sphere at P determine a linear onc parameter system of spheres,
and in this system there is a se,cond point-sphere P'; P is the
inverse of P. N

4-8. The circle at inﬁnfif

The pomts at mﬁn;ty on a sphere are of fundamental im-

portance in metrg{d geometry. Writing the equation of a sphere
homogeneously

.x2+y + 2% - 2pxw + 2gyw + 273w + dwt =0,

we see tﬁ‘af 1t cuts the plane at infinity =0 where

'\\‘. . x2+y _]_2:2._0

He.nce all spheres cut the plane at 1nfinity in the same curve.

~ (lhis curye, whose equations are

\ 3

w=0, ¥*+y*+2%=0,
is called the circle at infinity, or absolute circle.
Every surface of the second order which contains the circle

at infinity is a sphere, for, the general equation of the second
degree being

ax®+ byt + cx? 2 fyz + 2gax + 2hxy
: +2pxw+2gyw+zrzw+dw2=o,



if ihis is satisfied identically by w=o0 and x*+3*4-2°=0, we
. must have e=b=c and f=o=g=A.

Any plane cuts the circle at infinity in two points, the circular
poinis in that plane; and every cenic, in this plane, which passes
through these two circular poiats is a circle. :

Since every plane scction of a sphere passes through the
circular points in its planc it is a circle.

Since the pole of the plane at infinity is the centre of the
sphere, the circle at infinity js the locus of points of contact of

tangents from the centre of the sphere. The assemblage of these )\

tangents is the asymptotic cone of the sphere. N

If tie points at infinity P=[l, m, n, 0] and P'={l, mf,,:x‘z’\,’o]_

are conjugate with regard to the circle at infinity,
W 4w’ +nn’ =0, ‘ ."’}\\
hence the lines OF, OF are at right angles. .I{t'he line p is the
polar of P with regard to the circle at inﬁp\ity\its equations are
w=0, x+my+arxaq’ :
Hence the plane Op is perpendicul&t'fé"fhe line OF,

4-81. Isotropic lines and planésr
& line which cuts the circleat infinity, called an #sofropic pr
absolute line, has certain gecniiar properties. If the line
'\i'awc’/l:y/m:zfn
cuts the circle at iffinity we have
\“ Eimi+ni=o0,
Hence the d{}tﬁ.ﬁce from the origin to any point of the line, and
hence th{}}létance between any two points of the line, is zero.
Ifﬁ‘;i;%\he angle between the (real) line x//= y/m=z{n and the
isottopic line xfl' =y m’ =z,
V- B EIY_
@y
The angle is of course unreal, but the fact that the square of its
tangent is a.real number independent of [, m, # is held to justify

the term isotropic. . :
An absolute line is orthogonal to itself since

H+mmtnn=0.

\\‘ tan28=

QY
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The assemblage of absolute lines through a point form a
virtual cone, If the pointis [X, ¥, Z] the equation of the coneis

(= XP+(y= ¥ )+ (= 2)=o,

This is called the isotropic or absolute cone at the given point;
it is also a point-sphere. _
Through every point there is an assemblage of plancs tangent
to the absolute cone at the point; these are tangent-plancs to
the circle at infinity and are called absolute planes. The pla}ne
[x+my+nz=0 is an absolute plane if P+m2+n’=o0, he line
x{l=y{m=2z/u is orthogonal to this plane, and alsozhds 1o the
plane, - : Ny
Consider two lines [/,, m,, n,] and [k, m,, 1, bbth"lying in the
absolute plane [f, m, #], so that X/, =0, 3H,=0 and I=o.
Then we have ’

Iim: n=(mny—myn;) 1 (mly —\ﬁ&j (I miy— Lyomy),

and therefore N/

Z{myn,—myn = nl 2 20— (T L)
Hence if @ is the angle ert'.:iif’:‘en the two lines
cost = Sk Li/(S12 . TL2) = + 1.

The angle betweerrany two lines on an ahsolute plane is there-
fore zero or a‘mmultiple of . If, however, one of the lines is
absolute, Z}gﬁ::o and therefore 2/ [, =0 also, so that § is in-
determinate,) :

Thegguations of the circle at infinity are not altered by any
tran§formation of coordinates so long as they remain rectangular.
Ihis is the fundamental reason why we are able to express

Ametrical relations in terms of this figure.

By Laguerre’s-theorem (3-81): The angle befween two tnter-
secting straight lines is if2 times the logarithm of the cross-ratio of
the pencil formed by the two lines and the two absolute lines through
their intersection and lying in their plane,
~ With the same algebra, y=yux and y= #'x represent. two
planes passing through the axis of 3, while ¥= +7x are the two
absolute planes through their line of intersection, and we obtain
the result that the angle between tuwo planes s ifz times the logarithm
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of the cross-ratio of the sheaf of planes formed by the two planes
and the two absolute planes through their line of intersection.

If the pencil is harmonic, so that the two lines are conjugate
with regard to the absolute lines, the cross-ratic =-—1, the
fogerithm has the value ér, and the angle={1r.

1f the two lines coincide, the cross-ratio =1, the logarithm
—o, and the angle is zero, The same is true if the two absolute
lines coincide, i.e. when the two lines lie in an absolute plane.

T4 one line coincides with an absolute line, the cross-ratio
becomes zero or infinite, and thé angle becomes infinite (and )y’
imaginary). We already sawin this case that tanf=7. 6isungeal;
let #=c+ 4B, then : P\
tanaz+stanhf 7
I+itana tanlﬁ.’-"’}\\'

N

j=tanf = tan{x-+18) =

If » and 8 are real we have then

N
tang = -—tanatanhﬁo\’;,
X
and : tanhf=1.
Hence w—o and B is infinite. o3

)
O

45 EXAMPLES. 1%
1. Show that the equation of the sphete whose diameter i the
join of the two pol s'\[xf, ¥y, #1) and [%, ¥, 2, is
(o —a0) (% _'-xzz) +Hy—y)(y—ya)+(z —2;) {2 — %)= 0.
2. Find ’::e;cfuation of the sphere through the points:
0 /G~ B33 7b 2o sk =044
0 5, —2), (4, 1, 8} [-2 —3 2] [=4 10k
s () s (p -1 (52
V7 ) a-nrr-2P H =3P =35
3. Show that the eight points whose coordinates are x=a or
a,y=borkl, z=c or ¢’ lie on one sphere.
4. Tind the equation'of the sphere circumscribing the tetra-
hedron whose planes are x=0, ¥=0 z=o0, Ix+my+nz+k=0.
Ans, x’+y2+z2+k(x/£+y[m-5—3/?:)——-0.
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5. Find the equation of the sphere inscribed in the tetra-
hedron whose faces are (i) x=o0, y=0, z=o0, a4
(i) y+2=0, 2+x=0, X+y=0, x+y+35=1I.

Ans.

(1) ¥*+32+22—2a(x+y+2)+24°=0, where (3-4/)a=1.

(i) x*+p*+2?—2a(x+y+2)+a=0, where (3-l~G)a=1.

o —
- = I,

6. Cis a fixed point on OZ and U, V are variable Points @nd
OX, OY respectively. Find the locus of a point P whemythe
lines PU, PV, PC are mutually at right angles, o\

Ans. A sphere with centre € and passing througly s}
7. Find the equations of the two spheres wl}’i{;}i‘:bass through
the circle K yE b gy —yt3xtiz=o0, 28 RAY — 75 10 and
touch the plane x— 2y +2z=1,

N
s, (3= 12+ (4 1)+ (AP 4
and (x-—3)2+(y—2)”+:(}§+}5)2=16.

8. Show that the two circlesg:{';:iy +4zx—13=0, 53+ 4 57=¢
and x4y-4+s42=0, x2+;{%4%2+6y—6z+21 =0 lie on the
same sphere, and verify that the line of intersection of their

“planes cuts the two cigcles in the same two points.

9. Find the &gnation of the sphere for which the circle
2x+3y+43=8, ¥+ 1242249y —2z+2=0is a great circle.

Ans. (22 +(p+2)0+ (3 3) =y

x:\n’
10, dfythe sphere
N

X+ 2% L oux 420y 4 2wr - d=0
¢eitts the sphere

2 S

'"\\ » .
\/ 2432+ 2242w’ + 20y + 2w’z 4+ d =0
in a great circle,

2(uu’ +ov' 4 way')— (d+ d')y=zr'z,

11. Find thelocus of 2 point such that the ratio of its distances
from two given points is constant.

Ans. A sphere,
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sz, Find the locus of a point such that the ratio of its distances
from three given points are constant.

Ana. A circle,

14, If Ay, A,, ... are fixed points find the locus of a point P
such that Bk, PA,? is constant, k, being given constants.

ins. A sphere whose centre is the mean point of the given
points. _

t4. Find the locus of a point such that the feet of the per-
pendiculars drawn to the faces of a given tetrahedron lie in ong )
plans, ' S\

4ns. A cubic surface with conical points at the four yep;iées.

zz. Find the locus of a point such that the feet of the per-
pendiculars drawn to the faces of a given tetralfedron form a
tetrabedron of constant volume, RN

=4, Find by inversion the loci of the_.piéi’ﬁts of contact of a
varizble sphere with three fixed sphergs.which it touches.

ins. The three circles in which\one of the spheres is cut
orthogonally by a sphere throughythe intersection of the other
Wi, N

1. Find the locus of e centre of a variable sphere which
cuts each of (i) two ii)":t}ree given spheres in great circles.

Ans. (1) A plang, p%rpe’ndicular to the line of centres, (ii) aline
perpendicular 0 the plane of centres.

18, Show\:thht the following five spheres are mutually ortho-

gonal: \"\ X2 ytezt=al,
O a2 +y3+ 5t 2ay —20x-+ @i =0,
) x‘3+y2+zz—2ax—zaz+a2=0,

\m“‘ x2+y‘3+_zz—zax-2ay+a2=0,
x2+y2+z2ﬁax—ay—'ﬁ2+aﬁ=°- .

19. Write down the equation of a system of spheres passing
through the circle (g=0, 2+ ytroprt20y+d=0) and prove
that the spheres of the system cut the plane y =0 in a system of
coaxal circles.

Ans. x2+y“%zz+zf;oé+2gy+2)\3+d=°-
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20. Show that every sphere through the circle
(=0, ¥*+ 3% —~2ax++=0)
cuts orthogonally every sphere through the circle
(y=o0, x?+2%=r%),
21. Show that every sphere through the circle
(z=0, ¥¥412=q?)
cuts orthogonally every spherce through the circle ~
| y=0, (x—AP+s2=At= a2y, \
22, Find the limiting-points of the coaxal system (}t:’.\’p}iéres
determined by the two spheres N\
(x—a)+y*+22=c* and (x—a’)3+y2+;:?;¢:"5".
Ans. [(a+2a"}/(1+}), o, o], where A is a roo”t;}jf the cguation
A4 {c 02— (a—a')}A K=o
N

23. Show that all the spheres, that cdnbe drawn throu gh the
origin'and each set of points whereblanes parallel to the plane
xlaty[b+zfe=0 cut the coordihatc-axes, form a system of
spheres which are cut orthogajfﬂélly by the sphere

Xyl z%ﬁ{zﬁv +2gy+2hz=o0
if af +bg+ch=o. \ (Math. Trip. I, 1514.)

24. If a tetrahe r(i’n' is self-polar with respect to a sphere show
that it has an ofthotentre which is the centre of the sphere,

25, Findheequation of the sphere through the origin O and
three po;i\m'ﬂ, B, C whose coordinates are [a, o, o], [o, b, 0],
o, o5l ) :
SHow that, if O is the centre of this sphere, the sphere on
0G%as diameter passes through the' mid-points of the six edges
\"\;0 the tetrahedron OABC, and through the feet of the per-
pendiculars from O on the sides of the triangle ABC,
: {Math. Trip. I, 1915.)
Ans. X4yt ax—by —cx=o,

- 26. If ABCDE is an orthocentric pentad show that the five

spheres for which the tetrahedra B CDE, etc., are self-polar are
mutually orthogonal, :



] ' THE SPHERE 93

27, If a tetrahedron has an orthocentre show that this divides
the line joining the circumcentre and the centroid externally
the ratio 2 to I.

28. If the mid-points of the six edges of a tetrahedron lie on
a sphere show that the centre of this sphere is the centroid of the
tetrahedron. Show also that the tetrahedron has in this case an
orthocentre and that the sphere through the mid-points of the
edges passes also through the feet of the altitudes.
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CHAPTER V
THE CONE AND CYLINDER

51. A cone is a surface generated by a line which passes
through a fixed point, the zertex, and through the points of a
fixed curve. ' : .

"There is no loss of generality in taking the guiding curve as
a plane curve since any arbitrary plane section of the surizgd Can
be taken as guiding curve. Take the vertex as origin,capd as
guiding curve a curve in the plane z=¢, with equa’ti{n‘:f:i r=g,
fl=, y}=o0. Let P=[s', o', 2] be any point onsthe Surface.,
OP cuts the plane z=¢ where flx, vy=o, hc;w:s,\z being the
parameter of this point on the line OP, 12’ = 5and f{zv', iy t=o.
Eliminating ¢ we have f(ex'js’, cy'fz’) =gyor, dropping the
accents, flexls, eyf) —_-’Cf{x\ ;

This equation is komogeneous in x, A

Conversely a homogencous equition in X, ¥, 3 represents a

cone whose vertex is at the qriéﬁi, for if it is satisfied by

[, 2 F=1[I, m, 7],
it is satisfied by the cgdrdinates of all points on the line

X\ xfl=yfm=z/n.

If the guiding €urve is 2 plane curve of degrec n, the equation
of the cone i$also of degree u, and we call it a cone of order 7.
A cone of gpder # is cut by an arbitrary plane through its vertex
in n ge\:\éi}:ﬂng lines,

It tﬁé guiding curve is determined by two equations
,..\1'\.."' Ji(#s ¥, 2)=o0, fo(#, 3, &)=0
. the equation of the cone with vertex at the origin is found by

making these equations homogeneous by writing x/w, y/w, z/w

instead of #, v, 2, and then eliminating w; for the resulting

cquation is homogeneous in #, Y ® and is satisfied by the co-
ordinates of any point on the guiding curve,

- If the vertex is at the point [X, Y, Z] we may transform first
to this point as origin and proceed as before, '

N\
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We may also determine the equation by the following method.

Ex. To find the equauon of the cone with vertex [X, ¥, Z] and
guiding curve the conic

_®=0, fw, y)Sax®+ byt + 2y +2gn+2fy Fe=0.

Using homogeneous coordinates, the coordinates of any point on

the cone are given by pv=X 4+ A,
. py= Y+A}”:
pr=Z 4N, o
pw:W—;—)&w’, f:\‘:\.
where & =o, and &', ", w’ satisfy the equation \\, )

Fil, ¥, )—ax’2+by'2+2ka 3y +2gx’w +2fy'w’ +r:w
Now Z = pz, Ay’ =px— — X, therefore, eliminating g, m\\

dax’ =Zx— Xz, v
Similarly Azy' =Zy—Yx, ’:j\\;
and Aew' = Zw—TWANS
Hence the required equation 1s \ »

F(Zx— X7, Zy— Kz;,Zw-— Wz)=o0,
ie, by Taylor’s theorem - 3\.
3P, - OF 2
Z2F (x, v, w)- Zz(X L3735 +W )+ F(X, Y, W)=0,
or in non-homogené\hs coordmates
oF OF .
7 (s, 2),:73 (wc StV apt aW 422 (X, Yy-o.
5-11. f\[‘i\c gencral equation of a cone of the second order with
\«ertesiﬂt Ahe origin is
R \f(x y, By=ax?+by* tez? 2 fys+agaxt 2hy=0.
..\.,

:“'5 12, Cone of revolution or circular cone.
Let [4, m, n] be the dircetion-cosines of the axis, 2& the vertical
angle. Then if P=[x, ¥ 2] is any point on the cone we have
coso= Jx-!—my—i—;rz
T g R (B mt )t
Hence the equation of the cone is
(a2 a2+ 1 mt - nt)costa - (Ix+my+nz)*=
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5:121. Conversely the equation
x3+y2~+:22-(!x+rﬂy+:zz I=o
represents a cone of revolution or circular cone whose axis is
[/, m, n] and vertical semi-angle « given by

costo=({24+m? 4+ n2)-L,

5-122. Condition that the general homogeneous equation of the

second degree in x, y, & should represent a circular cone. QO
Comparing with 5-121 we have L)\
Aa=1-8, A= —mn, _ O

M=1-mt Ag=—nl, N
Ac=1 ;-ne, A= —Im, ",;\""'
Therefore 2= —Agh/f, ete. \4
Eliminating , —~ Maf~gh)=£"
Equating this value of A to two other vz;Iues obtained similarly
by eliminating 7 and » we have, provided none of the coeflicients

g rvanishes, of g Bplir_ch—fy
| . TS T
or P F;’f; Glg=H/h,
where FEg{z‘?af, G=hf—bg, H=fo—ch.

Conversely, if\g and k are all finite, these conditions secure
that the cong@sicircular.
- If f=optHen either m or n=o0, and hence either % or g=o.
If gf’bs ind =0, then /=0, and we find the condition

:\\ Sr=(a—b){a—c).
.:.};If'f, g and % all vanish, then two of a, b, ¢ must be cqual.

w\; 7 ?-12 3. From an examination of the equation of a circular cone
N it s seen that it cuts the plane at Infinity in a conic which has
double contact with the absolute circle x? 4 y2+2%=0, the points
of contact being on the line Ix+my+nz=o0, w=0. The con-
ditions for a circular cone can therefore be obtained from those

for double contact of two conics,
Let S;i=o0 and S,=0 denote two

conics, and consider the
equation 5]+ AS,—

o, which represents a pencil of conics throu gh
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their comrhon points. A conic of the pencil will degenerate to
two straight lines if A has a value which makes the matrix

trAa, ANy gt AG
Byt by+Ab, fi AL
atigm LHA, atde

of rank 2, i.e. for which the determinant vanishes, This gives a
cubic equation in A and the three roots correspond to the three =
pairs of common chords. If the conics have double contact two,
pairs of common chords coincide with the chord of contach.y
whilc the other pair are the tangents at the points of confagt.
The cubic has then two equal roots, and the matrix is of rark 1.
Or thus: D
(ay+Adg) 2+ (k1+Ak2)y+(gl+)\g2)z=p'}\
represents the polar of the point [1, o, 6] with resgect to the conic
of the system with the parameter A. When,this conic breaks up
into two straight lines the polars of a}l’]%ints are concurrent
at their point of intersection, and jri\particular the polars of
{1, 0, 0], {o, 1, 0}, and [0, o, 1] are sé;icurrent. The condition for
this is that the matrix should be'of rank 2. When the conic de-
generates to two coincident linéé; the polars of all points coincide,
and the condition for thigdg that the matrix should be of rank 1.
Hence the condition§ fliat the equation
ax® by }-czz+2fyz+ 2gzx+ 2hxy=0
should represeft’a circular cone are that for some value of A the
matrix \ aid B g
~Y
\\ S h b+a f
\ z f etA

wspé)ﬁfd be of rank :.

3 - .
N\ Ex. If the general homogeneons equation in &, , » represents a
circular.cone, prove that the direction of the axis is [f~%, &7 A1)

5:2. Intersection aof the cone
flw, 3, ) =axt+ byt o2 +afya+ 2gant2hay =0
with the plane Ix+my+nz=0

which passes through the vertex.
SAG ' 7



98 THE CONE AND CYLINDER {cHaP.

1, m, n are not all zero. If # is not zero, eliminate g, and we
obtain the quadratic equation

n*{ax?+ byt 4 2hxy) - 2n (gx-i—fy) (E;x +my) +e(lx+my)*=o,

Le,
% (cl2 — 2gnl+ an®)+ 2xy (hn* — gmn — Jui-tcin)
_ 32 (b — 2 fmn -+ cn®)=o.

'This equation determines two values for the ratio yjx, say 3/ E
and y,/x,, and the equation of the plane then gives corrcspondmg
values for zjx. We thus get two sets of values of the pAting
x:y:z The plane thus cuts the cone in two gencrating Jines,
with direction-cosines proportional to [x;, ¥, %] and, [%, Vay ).

There arc two particular cascs of 1mportance. ¢

521, If the two gencrating lines coincide, t\ht, planc is a
tangent-plane to the cone, touching at all, nts of this gener-
ating line. The condition for this is thgfs Ahe Lqmtmn in ylx
should have equal roots, hence PAY

(hn?—gmn— fnl-+ clm)®— (bn® — zﬁ?m—i- ey (el? — 2gnl+ an?) =

We find that #* is a factor of; he left-hand side. Rejecting this -
factor, which is not zero, we “obtain the cquation

(bc-—fﬂ)lz—l—(ca—a&)\mt‘_(ab B\ 0?2 (gh— af)mn
\\"’: + 2 (hf = bg)nl +2(fg —ch)m=o.

I capital letterdenote the cofactors of the corresponding small
letters in tlfe’déterminant

\"\“ _ D=ia &k g
. "\§¢0' k b f
\\ e g e

\"‘ e {:quatmn can be written
o (1, m, n)= AP+ Bm*+ Cn*+ 2Fmn+ 2Gnl+ 2lflm=o.
More generally the conditions that the plane
Icvmy+nz+p=o

should be a tangent-plane to the conc are p=0 together with the
equation ¢ (Z, m, n)=o0. These two equations taken togethﬂr are
called the tangential equations of the cone.
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5.22. If the two generating lines are at right angles,
Xy Xyt MYt 2=0.
Now from the equation in y/x
iy bn® — 2fmn + em?
Voye  elE—zgnltan®’
Hence if we'put  Axyxp=0n?—2fmn+cm?,

' then ' © e =clt—2pnlt and
and from symmetry
Az, 3= am? — 2hlm + bl

Ilence the condition that the two generating lines should ‘be

at right angles is W)
(6+6) B+ (c+a)ym®+(a+byn® —2fmn—2gnl— 23117(1‘-—0
or (a4 b+ ) (B+m2+n?)— (L, m, n) =0\ !
\/

5-23. Angle between two generating lm(s ol
If 8 is the angle between the two lings;, - then
_ cosf= (21 %+ Y1 Yot 21 z’g}(Eﬁqz N2y 3,
Now Za,2. Tt '*—-E(vlya—uxgyl) + (Zapy )",
Also the sum of the roots of the equation in y/x is

Sox Wy “‘\k?l2 gmn—_j_‘n_lfi—clm, /

e e e 2
therofore " yg\\ an? —2gnl+cl
)t(xly‘*l-xgl)— — 2 (hn®—gmn— ful+ clm)
and }\0(:’53}’2—%3’1)2_}‘2 (x1y2+x2y1)2 — 41 Xy Y1 Y2}
=4 (kn—\g?nn — ful+ clm)? — 4 (bn* — 2 fmn+em?) (cl®—2gnl+an®)
= (1, ).
Héisc
NV aSae Sare — 4IRS (1, m, my+ (S (o) B 2Zfmn
‘Therefore finally
 (erbr@emt ) flhmn)
b7 Prmi+n)—flomni—4SE 4l m,n)
z{ —zp. gL m
@ S —f{l, m, n)

or ' tanfl=

N

¢\

)¢
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5-231. @ is real or imaginary, and therefore the lines of inter-
section are real or imaginary, according as
$(l,m,n)< or >0

5-3. Polar of a point with regard to a cone.

The polar of a point P=[«’, y’, #] is defined as the locus of
harmonic conjugates of P with respect to the pairs of points in
which a variable line through P cuts the surface.

Let U, V be the points of intersection of any line through £
and O=[x, ¥, ] any point on this line. If X divides PO in the
. . . oA\

ratio k: 1 the coordinates of U are -
kax + x et A\
B+ S ) e \ 2
Substituting in the equaticn of the cone we haj}e\
alketa ¥+ ... +2f(ky+y’)(k24§z’)+ =0,
Hence AN
B2 f(x, v, 2)+ 2k {axx’+ byy' + ggﬁéf}-f(yz’ +5'%)
+g (e +50) Hh(FAINH Y &) =0
The roots of this equation cogrespond to the two points uv.
If (PQ, UV) is harmonic, e two values of & are equal and of
opposite sign, therefore, ‘
axxAn L Hf (R YR + L =0
Hence the equatign of the polar, the locus of , is

x{ax’ + byl )y (ha' + 8y + ) te(gx’ +y +es)=0,

which m{y also be written

'\

Ny

' o o o
‘,\\" x @,‘l‘ya—yﬂ‘l‘z Ef_O.

,\J “Hence the polar of any point is 2 plane passing through the

\\Aertex, and the polar-planes of all points on 2 given line through

the vertex coincide. If the point P lies on the cone, the polar-
plane becomes the tangent-plane at that point. :

5:4. Reciprocal cones.

The condition that the plane Ix+my+mnz=o should be a
tangent-plane to the cone f{x, y, 2)=0 is

¢(l, m, n)=o.
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The line x{l=y/m=zx/n is normal to this plane. Hence the
normals at O to the tangent-planes are generators of a cone
whose equation is
b (x, 3, 3)= Ax?+ By*+ Cat+2Fyz+2Gax+2Hxy =c.

This cone is called the reciprocal cone. The relation between the
two cones is a mutual one, for BC—F*=al}, GH—-AF=fD,
etc., where D stands for the determinant

I_ahg.
‘hbf' ¢O)
gfc‘ A\

The intersection of the cone f(x, ¥, £)=0 with the plaiesat in-
finity z=o is a conic, the conic at infinity on the cone/The two
conics f and ¢ ave reciprocals with respect to t1i¢ ¥irtual conic
Q=%+ y%+2%=o, the circle at infinity, in the dsual sense, viz.
that the polar with respect to £ of any poift On f is a tangent
to ¢, and wvice versa. o)

541, The reciprocal of a surface “F in the corresponding
sense is defined as that surface & which is such that the polar
of any point on F with respect to the virtual sphere

xzdé'yz—i;zz+éuﬂ=o
1s a tangent-plane %F’, and vice versa. In this sense we find
that the reciprocl ofthe cone f(x, y, #)=0 is the assemblage of
planes [7, , n,\'p}éuch that f(I, m, n)=o0, for the polar-plane of
[+, ¥, &, 3{1 is

) ¢ Kxt+yy+astww=0,
ie, tthlane

(2, m, m, p] =T, 9, &5 @],
.40 since f(&', ¥, ¥)=0 we have the equation f(/, m, n)=o.

\ ) But this is the condition that the plane [2, m, n, ©] should be a
tangent~plane to the cone é(x, ¥, 2)=03 hence the assemblage
of planes [I, m, n, p] which satisfy this condition are these
tangent-planes and all planes parallel to them. These p'alanes'do
not envelop a surface but are tangents to the conif: in which

é(x, ¥, 2)=o0 cuts the plane at infinity. Thus the reciprocal of

1

cone is not a surface but a plane curve.
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5:5. Rectangular generators. '
The plane Ix+my+nz=o0
cuts the cone - | fla,y,2)=0 . (1}
in rectangular generators if :
Sa.ZB—f(l, m, n)=o.
The normal to the plane at Ois therefore a generator of the cone
Za.8x%—f(x, y, ¥)=o0. ( \

Hence all the plancs through O which cut the given_ c()‘m, in
rectangular generators touch the cone which is the rec;pmcﬂ of
(2). To find the reciprocal of {2) we have “:"'«.

(c+a)(a+6) fa—A—LaZa \
gh+(d+o)f=F+fZa. '
Hence the reciprocal of (2) is D

Za.f(x,y, Z)TG’J(J" P, = ceee{3)

A tangent-plane to (3) thus cufs (1) in two rectangular gener-
ators. N

N

5-51. If we attempt to get a set of three mutually rectangular
generators we must oﬁome the tangent-plane to (3) so that its
normal is a gene@hr of the given cone (1). But this normal is
a generator of §2),"and the generators which are common to (1}
and (2) also beleng to the absolute cone Ex?=o0. Every generator
of the a sh}ﬁt'e cone is orthogonal to itself and lics in its own
normalpléne (just as a point on a conic lies on its own polar).
Hen}‘s we fail in general to obtain a set of three distinct mutually
ree,tangula: generators. Not only are they imaginary, but in any

{ 'éuch set two c01nc1de.

N
%
\_ }

5:52. If, however, a-+b+c=0, the two cones (1) and (2)
coincide, and the normal is always a third generator, i.e. if we
take any generator, the plane perpendicular to it through the
vertex cuts the cone in rectangular generators, The cone is then
said to be a rectanguiar cone. We have thus the poristic theorem:
a cone possesses either no set of three mutually rectangular gener-
ators, or an unlimited number,
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5.53. If the reciprocal cone is rectangular, the given cone has
the property of possessing an unlimited number of sets of three
mnutually orthogonal tangent-planes. The condition for this is
.. B+ C=o0, and we shall say that in this case the cone is an
orthogonal cone. : .

The equation of a rectangular cone referred to a set of three
mutually rectangular generators is

fyz+gaxthxy=0;
and the equation of an orthogonal cone referred to a set of three
" mutually orthogonal tangent-planes is L\
pRat Ryt et — 2g7YR — 2 PIN — 2PGNY =0, O

Zx. 1. If OX, OY, OZ and OP, OQ, OR are two sets'of three
mutvally perpendicular lines, prove that they are all gererators of
the same rectangular cone, \V

Take OX, GY, OZ as coordinate-axes, and_let'the direction-
cosines of OP, etc., be [I, my, m], etc. Then the ection-cosines of
0X, 0Y, OZ referred to OP, 00, OR arf:‘[ll}bg, 1,], ete. Hence

1,1, + Mgty + Mighy ;—;.OI
ml +mh 'L‘?éé"=° .
Im, +32m3’~;—1—'f;m3 =0
The equation of 2 rectangulan cone containing OX, OY, OZ is
2 iﬁ%+gzx+kxy=o,
and if 1t contains QP,\bQ, OR, we have
<" frayig -+ gy + hlym =0,
xt\."" Frginy + gy dy + hlpitty =0,
\"\ frmgmy+ gitgle+ hlynty=0.
But fhese equations can be simultancously satisﬁed_sin;e when we
adihthe Jeft-hand sides together the result vanishes in virtue of (1)
“Werice the ratios f1 ¢ % are uniquely determined.
\/ The reciprocal theorem is that two sets of three mutually ortho-
gonal planes through the same point are tangent-planes to one conc.

Ex. 2. If a circular cone Is rectangular prove that its vertical

. 1 e . :
semi-angle = cos™! %, and if it i orthogonal that the vertical semt-

. S
angle =sin~! — -,
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5-6. The geometry of cones with a common vertex is pro-
jectively equivalent to the geometry of conics in a plane. Toevery
cone corresponds its conic at infinity C. To reciprocal cones
correspond two conics at infinity which are reciprocal with
regard to the circle at infinity . A triangle which is self-con-
jugate with respect to () corresponds to a set of three mutually
rectangular lines through O. Two conics have in general a unique
common self-conjugate triangle. If Cand Q are referred to theies

common self-conjugate triangle their equations are of the fort
RS \

'\

x? 4?4 af=o0, N

"
< 3

The equation of a cone can therefore always be «eruced to the
form »

axPby + 2P0,

ax®+by*fext=o,
The envelope of lines which cut two concs
flx, v, 2)=ax® 4. +2ﬁ!}+
3, =da+ ol st =,
in a harmonic range has for 1ts ’cangentlai equation
(b’ +-bc—2ff ) B4 .. -I*zfgk +g'h—af —a'fymn+ ..

This is a conic called {he harmonic conic-envelope of the given
conics*, When thigomc J' is the circle at mﬁmty
" O x2+y2+ ~2._0’

the equatioing 68/the harmonic conic- envelope becomes

:"\}" (b+C) Bt .. —2fmn— ... =0,
the e}métion found above, as the condition for rectangular
gencramrs

\To a rectangular cone corresponds a conic C which has an-

\ ‘1nﬁ.mty of inscribed triangies each sclf-conjugate with respect to

the circle at infinity £). T'he conic-locus € and the conic-envelope

€ are then said to be apolar; C is also sald to be outpolar to Q

and Q inpolar to C. The condition that the conic-locus f and the
conic-envelope ¢’ should be apolar is

ad' + ... +2fF'+ ... =0,

® See Sommerville's Analytical Conics, chap, xx, § 18,
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For A'=B'=C"and F'=G"=H' =0, thisreducestoa+ b+ c=c¢,
the condition for a rectangular cone. Similarly to an orthogonal
cone corresponds a conic which has an infinity of circumscribed
triangles each self-conjugate with respect to the circle at infinity.

5-7. Cylinders.

A cylinder is a surface generated by aline which passes through
points of a fixed curve and is parallel to a fixed direction, the
axis. 1t can therefore be regarded as a cone whose vertex is a
point at infinity. Let the given axis be taken as the axis of z, and, ()
the guiding curve the plane curve f(x, y)=o in the plane of gy
Let P=[«', ', '] be any point on the surface, then the line
x=y', y=y' through P parallel to the axis cuts z;qﬁvhére
f(x, y)=0. Hence f(x', y')=o0, or, dropping the acgedts,

f(x,y)=o. .’\\:
Hence the equation of a cylinder whose axis i the axis of z does
not contain . 1f we express the equatign\in homogeneocus co-
ordinates it will thercfore be homogql}géué in x, y, w. We may
say that a homogeneous equation jft three variables &y, %1, ¥
represents a cone with vertex 4=0, x,=0, 5=0; if this is a
point at infinity the surface jg 2 eylinder.

571, As a quadric coneNs cut in two straight lines by any
plane through its vertex, so a quadric cylinder is cut in two
straight lines by an§ plane which contains the point at inﬁmt_y
onts axis. One sucH planeis the plane at infinity. Thusa quadric
cylinder cuts/he’plane at infinity in two straight lines, and the
nature of tffg cylinder will depend upon whether these two lines
are real,‘cotncident, or imaginary. Thus, while there is only one
t}'pf;.g‘f.”feal cone of the second order, there are three types of

Vlinders.

When the two lines at infinity are real and distinct, every plane
(not parallel to the axis) cuts the surface in a conic which has two
real and distinct points at infinity and is thercfore a hyperbola.
The cylinder in this case is a hyperbolic cylinder. The tangent-
planes along the lines at infinity are asymptotic planes.

When the two lines at infinity are imaginary, the sections are
ellipses, and the cylinder is an elliptic cylinder. In this case the
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cylinder has only one real point at infinity, the point at infinity
on its axis,’

When the two lines at infinity coincide, every scction is a

- conic which meets the line at infinity in its plane in two coln-
cident points, and is therefore a parabola; the cylinder is a
parabolic cylinder. In this case as the plane at infinity mects the
surface in two coincident generating lines it is a tangent-plane,
i.c. a parabolic cylinder touches the plane at infinity along a line
at infinity. ' S

If the two lines at infinity (necessarily real in this case}are
conjugate with respect to the circle at infinity, the dsymptotic
planes are at right angles, and we have a reciaﬂgufa%, hyperbolic
cylinder. £ fe,

If the two lincs at infinity (necessarily imaginary in this case)
are tangents to the circle at inﬁnity'—-for\a. rial cylinder, if one
is a tangent, both must be tangents—w@ have a circular cyfnder.
In this case a plane through the Cll(:'!:rh of contact {the polar of
the point at infinity on the axis) is\perpendicular to the axis and
cuts the cylinder in a conicewhose points at infinity are the
circular points, i.e. a circlexy®

5-72. The general equation of a quadric cylinder with the axis
of 3 for axis is s\

flx, Yeax?+ 2hay + by* + 2gx+2fy+e=o.

The polar-plane of [+, ¥', 2] (or the tangent-plane at this point
if it is a point of the surfacc) is '

"\ . ¥ 3 ’ ! * !
e + Ry +g) by by + )+ (g8’ + [y + o) =0

Tb}e\\ébnditions that the general plane x+my -+ nz+p= o should

Jbe a tangent-plane are _
: n=0,

and AP+ 2Hbn+ Bm?+ 2Glp+ 2Fmp+ Cp*=o,
where A =bc—f%, etc., and F=gh—af, etc.

Thus, like the cone, the cylinder requires two equations 1o
express the tangential condition. The equation #=0 expresses
that the plane is parallel to the axis. The other equation is the -
condition that the line of intersection Ix+my+p=o0 with the
plane 2 =0 should touch the conie f(x, ¥) =0, z=0. This equation
by itsclf then is the tangential equation of this conic.
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5-73. The reciprocal of the cylinder with respect to the virtual

sphere x2+ 3%+ 224 w?=o0is the assemblage of planes [/, m, n, p]

such that 1y ohfm 4 bm?+ 2glp+2fmp+cpt=o. -

But this is the condition that the plane should envelop the conic
Ax?42Hxy+ By*+2Gx+2Fy+ C=o0

since Da=BC —F?, etc.

Hence, as in the case of a cone, the reciprocal of a cylinder is
a conic. :

574, Both the cone and the cylinder, while they are tworl )
dimensional assemblages of points, or loci, are only ong-
dimensional assemblages of tangent-planes. The reciprocals are
two-ditnensional envelopes but only one-dimensional doti, ie.
they are curves. They are, as we shall see later, pmi}ular cases
of developablés, or surfaces which can be developeéd or laid flat
on a plane without stretching or tearing. ()"

X 3

5-9. EXAMPLES. ' PN\
1. Find the equation of the cone.yith vertex I« ¥, &'} and
base x=o0, x%/a®+3?(b2=1. RN

Ans. (z— 2= (' ¥ 2@ (% =y 3B

2. Find the equatiof “of -the circular cone v.vith vertex
[, y', &'], vertical ic@i-’angle «, and direction-cosines of axis
[, w2, 2]. \

Ans. {Sl{n@)y =2l D(x— ) cos’.

3. Find Ahe ’equation of the cone which conta_ins t%le t}}ree
coordina(e“r\zfies and the lines through the origin having direction-
ratios i} 1y, m) and [, 7z, ).

& Am 21, 1y (my iy — g ) YE == O
\ 3:1.. Find the equations of the lines of intersection of the plane
x4y —z=20 with the cone yz -+ bzx - 128y =0

Ans. x=yl3=2|4 x=y[2=5[3.

5. Find the direction-ratios of the lines of intersection of
the plane {1) x—5y+35=0 with the cone 752+ 5yt — 387 =0,
(ii) 34— 11y —77=0 and 25yz— 3838+ 66xy=0.

Ans. (i) [1, 2, 31 -1, 2]: (ii) [55 I, 2]! [7’7! 260, "'363]'
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6. Find the angle between the lines of intersection of

(1) x—3y+2=0 and ¥ — gyt t=o0,

(i) x~(a+1)}y+z=0 and a2 —{a*+ 1)y 4 =0,

(i)  Ox-+3y—2z=o0 and I+ an-xy =0,

(iv) x+y+z=oand  Zyr—2zK—xy=

(¥} xty+z=o0and Oyztzex—2x0y=0,
(vi) le+my+nz=0 and Y2+ x4 xy = o,‘ \
(vii) x+y+g=0and (QA+1)(x+y)z }s:\y

Ans. (i) cos™t §, (il) cos~1(2a+ 1)/(a®+2), (111) g@ “(iv) go°,
(v) 60°, {vi) cos—lEmn/(ZP Zmn), (vii) 60°. '

2\
4. Show that the cone &%—az*+3xyS=dcuts the sphere
%2+ 42422 —2x—4=0 In two circles, N

8. Show that the cone yz-twahxy=o cuts the sphere
#2492+ 22=1% in two equal circlésyand find their radius.
Ans. 34/6r. o

) e
SN

9. Show that AN
x2+2y2—Lw?~L4yz bzx—zx+8y—23+0=0
represents a COIQ\':HK:]. find its vertex.
Ans. 13, =3, o}.

10. Sho@ ‘i:hal. any plane through the vertex perpendicular o
a gencgé}mg line of the cone 6yz—23x+ sxy=o0 cuts it in two
llnf\e\which are at right angles.

AN *I1. Tind the equation of a cone with vertex at the origin ¢ and
\'"‘ /base a circle in the plane 5= 12, with centre [13, 0, 12] and radius
=g; and show that the section by any plane parallel to x=0 is
a circle,
Prove that a spherc can be drawn through the scctions of
the cone made by the two planes =12 and x =6, and find its
equation.

Ans. Cone 6(x?-+y2+ 2% =13xz,
sphere x%*+3%+3*—26x—1324-156=0.
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12. Prove that the straight lines which cut two given non-
iniersecting straight lines, such that the length intercepted is

constant, are parallel to the generators of a circular cone.
(Math. Trip. I, 1914.)

13. Prove that the locus of a point whose distance from a
fixed line is in a fixed ratio to its distance from a fixed plane is a
cone. Exarnine the cases when the Iine (i} is parallel to the plane,
(i} lies in the plane. ~

Ans. (i) A cylinder, (if) two planes.: \

£

14. Show that the locus of vertices of circular cones whi;cl{\\“u\’
contain the ellipse =0, a?fa?+y2[b=1{a> b} consists of| the
virtual conic x=o0, y*/{a® —b%)+2*@’+1=0 and the hygerbola
=0, 5‘321,-"(62 — bz) . 22,"??2‘: 1. \:m:\'\"'

" 15, Find the locus of the vertex of a rectanguidr cone which
passes through a given conic and through a give point.

Ans. A conic. Q)

AN

6. Find the locus of the vertex of an ‘6rthogonal cone which
passes through a given conic. N

N
X

Ans. A sphere. R\
Q)
)
‘\'\\./
O
RS
&
x:\w' N
:"\‘.
N\
A
R\
O
N/
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\by revolution about the axis /éé)
: _ .Y

CIIAPTER VI

TYPES OF SURFACES OF THEL
- SECOND ORDER

6-1. Surfaces of revolution.

A surface of revolution is generated by a plane curve rotating
about a straight line in its plane. The curve is called the gendr>
ating curve or meridian curve. We shall assume that it i3 S
metrical about the axis of rotation, £\

Take the axis of # as axis of rotation, and the genemth’ig curve

originally in the plane of yz. Let its ~g‘
equation in v, & be : “,\_‘5_ ~
i =1(2). F, K;m »
Let P=[x, y, z] be any point on the\\5\

T Flagal
surface, and let O be the COI’l’prGDdl\xlg .

point on the gencrating curve;(dfaw ol

ON 1 Oz. The points generated ‘by O ST

all lie on a circle with centrgul, and the s

plane of this circle is pctpendicular to *

Oz. Hence P and Quhave the same g, Fig. 21

and the wordm’ltes\ﬁf O are [o, ¥, 2] where NQ=y = NP.
But NP?= x“‘—l—y{\and y't=f(z). Hence

>, wtyt=f(3).

We are ‘p‘arﬂculaﬂy interested in the surfaces of revolution
gencm{‘é& Dy conics.

§§\i Surfaces of revolution of an ellipse about an axis.
WThe ellipse y2/b*+ 22/c?=1,

of z, generates the surface _
x? =2
72 +Jz.;2+ =1, - t_J
which is called an elfipsoid of Y
revolution or a spheroid: an - |

oblate spheroid if b<c, a pro- Oblate spheroid

Prolate spheroid
late apherazd if b>c.

Fig, 22
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6-12. Surfaces of revolution of a hyperbola about an axis.

6121, Axis of revolution the transverse axis.
The generating hyperbola is —ytb2+ 22/ct=1, and 1t gener-

ates the surface a3l gt

pTETa "

The surface consists of tweo distinct parts and is called a
hyperboloid of revolution of two sheets.

Fig.23. Hyperboloid = Fig. 24. Hyf:r'é‘i'boloid Fig. 25. Paraboloid

of two shects, of arfesshcet. of revolution

6-122. Axis of revolution the conjugate axis.

The generating hypczfi@a is y2/b2—z*%j¢ =1, and it generates
the surface x g 2t
O ptpTaTh

\Y;
The two bragehes of the hyperbola generate the same surface,
which counsists of one continuous sheet, and is called a hyper-

boloid gf-eevolution of one sheet.

B8, Surface of revolution of a parabola about its axis.
«<\ \Phe equation of the parabola is y?=4p=, and it generates the
Mirface x2+y2=4pz, which consists of one infinite sheet, and is
called a paraboloid of revolution.

614, The equations of these surfaces are all of the second
degree. Any meridian planc cuts +he surface in a conic congruent
to the generating conic, and any plane perpendicular to the axis
of revolution cuts it in a circle. Ifa comic is rotated about an axis
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which is not an axis of symmetry the generating conic will not
come to coincide with itsclf again after a rotation through two
right angles, and the meridian plane will cut
the surface in two conics. These together
form a curve of the fourth order, and the
surface will be of the fourth order, ie. its
equation will be of the fourth degree.

- Suppose, for example, that a parabola is
rotated about the tangent at the vertex. Its
equation is 22= 4py. The equation of the surface
of revolution is formed by replacing ¥* by
x2+?, hence it is

z=10p*(x* +3%), .Flg 6. Surface of
; \evolutmn of para-
an equation of the fourth degree. Nhols about vertical
As another example let the circle N\ tangent
(y— zﬂ“s(é

be rotated about the axis of z. The equauon of the surface of
revolution is ~
(v (s gb 4 2=

~

s |,
Fig. 27. Anchor-ring

which, on rationalising, becomnes
(%2 +37 + 2%+ 57— a%)? = 4 b (%’2 +5%),

again an equation of the fourth degree. This surface is called
an anchor-ring or fore,
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6-15. A straight line rotated about an axis in the same plane
will gencrate a surface of the second order.,

If the equation of the line is y = u#, the equation of the surface
of revolution is %+ y?= 222 This is a cirendar cone,

A\
Fig. 28, Circular cone Fig. 29, Qrcular cylinder

. . N .
If the line is parallel to the axis, y =5, th€ équation of the sur-
face of revelution is 4% +y2=1% a circilareylinder.
8-2. These surfaces can now be .gé,néi'alised. '

al

821, The equation R\
x% 4Nt
i T
which represents a 5phe1%1d when two of the quantities a, b, ¢
arc egual, and a sphéx} when all three are equal, represents the
general ellipsoid,. Sections by planes parallel 1o any of the co-
ordinate-plangs.are ellipses which are real only within distances
a b, ¢ resp\e?tfie[y from the origin. The surface is closed and
finite, \iw;
: N\ . X 42 2
622, The equation — R R
AN
‘fepresents a hyperboloid of two sheets. Sections parallel to the
\yz or xz plane are hyperbolas, sections parallel to the xy plane
are ellipses, which are real only at distances greater than c.

.. 2 z. ‘zz
6:23. The equation 2T 271

represents a hyperboloid of one sheet. Sections parallel to the xy
plane are always real ellipses.

SAG 8
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6-24. The equation of the paraboloid may be gencralised to
ax®+byt=4pz. When a, b are of the same sign the surface re-
sembles the paraboloid of revolution, but sections perpendicular -
to the z-axis are pow ellipses when a#b. Tt is called an elliptic
paraboloid.

625, If 4, bare of opposite sign we have a new type of surface,
called the hyperbolic paraboloid. l.ct us write the equation

8y, R o
at B T’

N ¢
and suppose ¢ to be positive. Sections parallel to the y¢ ef)ax
plane are parabolas, as before, but turned in opposite digdctions.
Sections parallel to the xy plane are hyperbolas; flése on the
positive side of the origin have their transvcr§K£x§(:es paraliel to
the axis of x, while those on the negative sidé_have their trans-
verse axes parallel to the axis of y. N

L

: ,\:~\ . Fig. 30. Hyperbolic paraboloid
B §1." By.a change of axes the equation of the hyperbolic

Qgrﬁboloid may be further simplified. Taking the planes
O xja=ylb=0 and sfa+ylb—o
\ } “as coordinate-planes &' =0 and y' =0 (in general obligue), the
equation assumcs the form

x'y =kz'

83, Ruled surfaces. A surface may be generated also by the
motion of a line or a plane. In the former case we have a ruled
surface, in the latter an envelope. We shall consider at present
certain simple cases of ruled surfaces of the second order.
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631, The surface gemerated by a straight line which rotates
about an axis which it does not cut.

Tske the axis of rotation as axis of %, and let ON be the com-
mon perpendicular of the two lines in 2|
any position. Then O is a fixed point '
and (0N is of constant length =p. Take
O as origin and the plane through O
perpendicular to Oz as plane of xy.
In this plane take two fixed rectangular x_-
lines as axes of x and y. The angle
between the revolving line and the axis
of rotution is also a constant =g, _ Y

The position of the line is determined by the variablé angle
xON =§. Let P=[x,y, #] be any point on the revolv%;lme and
let & F=v. Then G

Fig. 31 O

x=pcosf—rsinasinf,

%
v/

y=psind +rsinoccosi9f!o\’;,\
2= rcosa.:‘t.‘

These are freedom-equations of thga»l’gciis of P, in terms of the

two parameters 7, 0. Elimjnatiqg:é“;and @, we have

ERRY =p2+fzsﬁjzm=p3+ Zitania,
ie. : Rl tanta=pt
The surface is therch{QiaﬁyperbOlOid of revolution of one sheet.

6:32. The gencral hyperboloid of one
sheet may be genéfated by a moving ling in
the followingway, as

The m{f:\xce generated by a line which
joins pairs of points with constant difference
of seteentric angle on tuwo equal and similarly
‘Plared ellipses in parallel planes.

Let the line joining the centres of the
ellipses be perpendicular to their planes,
and take this line as axis of z, the mid-
point of the join of the centres as origin,
and axes of x and y parallel to the principal
axes,




AN

\‘:

116 TYPES OF SURFACES Tcuap.
The coordinates of the corresponding points O, O’ are
0 : lacos(d—a), bsin{—a), . ¢l
Q' : [acos(p+a), bsin(p+a), —cl.
The direction-cosines of QQ’ are proportional to
asinesing, —bsinxcosg, ¢
If P=[x, y, 2] is any point on OO,
xja=cos(p—a)+tsinasind= cosacosd 4 (14 fsinasing, O\
yio=sin(p—o)— £5inacosd = cosasing — (1 +1)site cgsi?’){
zle=1+1. ' o\ N
These are freedom-equations of the locus in terrgs':@‘f' the two
parameters ¢, &. Elimipating ¢ and ¢, we have, 7))
x%ja?+ y2[b? =costa+ (14 f)2sin®a = cog® Bb z2/e?.gin?a,
xZ yB 32

E"_}— —5 Z,CD\QE"O‘

ie. L —
b2 cPcosecto, LV

If the sign of o is changed evidcﬁt]y:the equation is unaltered, .
hence the surface can be genpré;jceﬂ in two different ways; of,
from another point of view,,:d:]lé surface is covered by two sets of
straight lines, or systemgtof generating lines. Each system is
called a regulus. " '

An effective mogel\of this surface can be made by fixing two
elliptic disks together rigidly in parallel planes and passing a
continuous thread alternately through holes pierced on the two
eilipses a;c‘(?qﬂal intervals of eccentric angle.

6-33;’2}1:he hyperbolic paraboloid also can be generated by a

rgm\\(i{i'g line.
“\HBA’'B is a regular tetrahedron; O and (" are variable points

“Yon AB and A’B’ such that AQ=A4'Q". Q" generates a hyper-

bolic paraboloid.

The lines joining the mid-points &, %'; y,¥'; 5 2" of opposite
edges intersect at right angles. Take these lines as coordinate-
axes. Let Ox=0x'=0y=0y =02=05"=¢, Adz=¢tc.= av'2,
AQ=A'Q =r4/2. Then the coordinates of Q and Q' are

Q:la—r, a—7, £l
Q' :la—r, —a+r, —cl
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The direction-cosines of QQ' are proportional to [0, a—7, ¢].
Hence the coordinates of any point on Q0 are

x=g—7,
y={a—-n(x+1),
z=c(1+1).
Eliminating # and #, we obtain
y a—r_X
- .
x ¢ ¢ A
ie. 2X=CY, A

igs AN
which is the eguation of a hyperbolic paraboloid in the second N
form,  \J

.s S
.
< 3

Fig. 33

This ma ;‘[ﬁé'generated also in a second way. If O and Q' are
variab@hém’nts on AA" and BB’ such that AQ=BQ’, the equa-

tion ofthe surface generated by Q' can be written down from
the\}ast result by interchanging and z, but this does not alter
\ﬁ;é'equation.

8:4, It remains now o examine whether the other 'surfaces
can be generated by a moving line, or if straight lines exist upon
them,

Consider first the equation

ax®+hytet=k, e (1}
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which can represent, for suitable vatues of the coeflicients, an
ellipsoid, one of the two hyperboloids, a cone, or a cylinder.
' x-X y-Y z-Z

Let - — I e (2)

be any straight line. Equating each of these ratios to { and sub-
stituting for », ¥, # in equation (1), we obtain the guadratic
n £ '
a(lt+ X)2+b(mt+ Y2+ c(nt+ Z)* =4

The line in general cnts the surface in two points. Tutif a&lles
entirely in the surface this equation must be true for alf “patues
of ¢ and becomes an identity. Equating to zero thegedeficients
of the different powers of #, we obtain the three fc:{uations: '

/N

“al’+ b4 en? =0, " 2 (1)
X +bmY +onZ = o,\ ) (4)
axuawﬂzm} ...... (;

Equation (5} expresses that the pomt [X Y, Z] lics on the surface,
If we choose any set of values ofs 5V, Z satisfying this cquation,
the other two equations, being homogeneous in /, w, , determine
twoscts of values for the ratmsl m 1 #, i.€. two directions through
the point. Hence thmugﬁ évery point on the susface theve pass o

. gemerating lines. These may not, however, be real. Eliminating
# between (3} and

. \c;Z2 (@l +bm?) + (alX +bm Y=o,
Le. P+ cZ% P+ 2ab X Yim+ b (5 Y2+ cZ%)m?=0.
The\;}\&é"t;'}f this equation will be real if
N @AY ab(a X2+ cZ7) (b YR 4-c2%) > 0,

Qﬁ'}. ' : — Z2ghe(a X2+ BV cZ%) >0,
) 3
e (by (1)) . ' abck < o.

Taking % positive the generators will be real only if a, b, ¢ are
all negative, or one negative and two positive. The latter gives a
hyperboloid of one sheet, the former a virtual quadric which has
no real points. The other surfaces, ellipsoid and hyperboloid of
two sheets, have imaginary generators. The generating lines
through a real point of the ellipsoid and the hy perbolold of two
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sireets are imaginary lines of the first species since each has one
real point upon it; those of the virtual quadric are imaginary
lines of the sccond species, _

if a. b, ¢ or kis zero, the generators coincide. In the last case
the surface is a cone, in the other cases a cylinder.

841, The paraboloids are represented by the equation
ax®+by?=2cx, :

and a similar investigation shows that the elliptic paraboloid, for
which ab = o, has imaginary generators. _ (\)

‘Thus all the quadric surfaces are ruled surfaces, buf the
generating lines are real only in the cases of the hyperbbloid
of one sheet, the hyperbolic paraboloid, the cop&)and the
cylinder, : O

65 EXAMPLES, N

S

1. The sum of the squares of the pcypié:}diculars from a point
to the lines y=wtand, #=c and y=rxtanb, = —c is 24%
Prove that the locus of the poinfdgtan ellipsoid, and state the
lengths of its principal axes. . Ny (Math. Trip. I, 1915.}

Ans. acosect, asech, a, where a?= k2~ ¢%, A circular cylinder
if the two lines are parallel.

2. Find the locus‘efthe position of the eye at which two given
non-intersecting {ines will appear to cut at right angles.

Ans. A hyperboloid of one sheet with the given lines as
gen eratur&s\'iﬁla its centre at the midpoint of their comimon per-
pendicilar, Reduces to two planes, one through each line per-
Pensiiit’ihar to the other, when the lines are at right angles.

~N 6} Find the locus of a luminous point such that the shadows
Neast on the plane of xy by the lines x=0, y=ny+b and y=o,
y=mx+a should be at right angles. Examine the case when
a=bh.
Ans. mnx® +mnyt —myg —nsx + anx+ bny=0, a hyperboloid
having the axis of & and the two given lines as generators. A cone
when ¢ =5, i.e. when the two lines intersect, :
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' 4. Find the locus of 2 luminous point if the ellipsoid
“x%at+ yRbE Rt t=1

casts a circular shadow on the plane of xy.

Ans. An ellipse y=o0, z2/52+x2/(a2 — 5% =1, and a hyperbola
x=0, 2 —j(a*— ) =1

3. Tf y2=ax is the equation of a parabola in the plane of xy,
and y+ =0 that of a straight line in the plane of vz, find the
locus of the perpendicular drawn from any point of the pasabela
to the straight line. (St Andre-}!gg,"r@b(x)

Ans. y2—2°—ax=o0, hyperbolic paraboloid. 4 I

6. Show that the locus of a line which mGbes parallel to
the plane y=2z, and intersects the two conicS”}:o, z%=cx and
g=0, yr=buis x=(y—)(¥/b-z/c). N

. ' . N . i

7. Find the equation of the surfacelgenerated by a line which

cuts the three lines _ PN\%
x=a, Xx=-—a @20 _yta_z-t2a

N
3

y=z’ y=-xi\ -3 4 5

N

Ans. 124 yt—zf= a0

8, TFind the equation of the surface generated by a line which
meets the thr e'\i}iﬁes x=2, 4Y=13%; &¥+2=0, 4y+33=0;
¥=3, 2x+77Q.

Ans. g+ yig—2*16=1.

9. Q'Trﬁe of constant length moves with its extremities on two
fisged ekew lines; find the locus of its mid-point.
)\ ¥ns. An ellipse. '

N
m\.J

\‘:

1. A circle of constant radius cuts an equal fixed circle in
two points and has its plane always parallel toa fixed plane which
js perpendicular to that of the fixed circle. Show that the moving
circle generates two cylinders.



CHAPTER VII

ELEMENTARY PROPERTIES OF QUADRIC
SURFACES DERIVED FROM THEIR '
SIMPLEST EQUATIONS

7.4. The surfaces of the second order, or quadric surfaces,
which we have recognised can be grouped as follows:

Kyt R o,
ia_?i';iic_zzl Ellipsoid (+ + +). \

Hyperboloid of one sheet (one minus). & N,
Hyperboloid of two sheets (two minuses)-

Virtual quadric (———)- RS

axt+ b+ 2cg=0 Elliptic paraboloid {a and & of, sa?n?e sign).
: Hyperbolic paraboloid {2 and6*of opposite
sign). N

7-11. Symmeiry. ' \ v

We shall consider these first from the point of view of geo-
metrical symmetry. - NY '

A centre of symmetry or centrg of'a figure is a point € such that
every line through C cuts th&figure in pairs of points which are
equidistant from C. Q . '

An axis of syﬁama{?fis’ a line such that every line “thxch cuts
this axis at right;angles cuts the figure in pairs of points equl-
distant from £he AXis. -

A plane pf\symmetry is a plane such that every line perpen-
dicular. tethis plane cuts the figure in pairs of points equidistant
from the plane. .

Ifthe plane of xy is a plane of symmetry, any line x=a, y=b
...\gu}S’ the figure in points for which z has values equal antd
opposite in sign. Hence the equation of the surface must contain
only even powers of 2. If the equation i8 flz 3, )=0 We have
Sz, v, 2)=f(x 3 —32). _

If the axis of = is an axis of symmetry, t0 a0 point [, 7> 2]

on the surface corresponds the point [—=# —J z], L.e.

1@, A=f(—% —P z)-
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If the origin is a centre of symmetry, to any point [x, y, 2]
corresponds the point {—~x, —y, —2], i.e.

fx 3, 5)=f(-% —3, —=2).

If the two planes x=o0 and y=o0 are both planes of symmetry,

f(x! Vs z)=f(_x:y’ z.)=f(-x, - z):

* hence the intersection of these planes is an axis of symmetry.
If the axes of » and v are both axes of symmetry,

flo, 3, 2)=f(% —p, =&)=f{—% —p,2), .
hence the axis of = is also an axis of symmetry. Inthis ng'a:?'t\’chere
may be no plane of symmetry. For example, the locus‘m,'” =0
has the coordinate-axes as axcs of symmetry, but it Tbs no plancs
of symmetry. RS

Q"

Lastly, if the three plancs #=0, y=0, s arc all planes of
symmetry, : NG
30 )= (=3, 8) = (5, <paSEf (=, =, —2), et
Lence the coordinate-axes are gl fxes of symmetry and the
origin is a centre of symmetry, \O
Applying these results, we see that the surfaces of the first
" group, ellipsoid and hy pp;bolmds have the coordinate-planes as
planes of symmetry,(the coordinate-axes as axes of symmetry,
and the origin as centre of symmetry. On the other hand, the
paraboloids ha\@\ only the planes x=0 and y=0 as plancs of
symmetry : and the axis of x as axis of symmeiry.

7.2, We Qhall investigate first the elementary tangcntlal pro-
pcrtles\akmg the central quadric
O _ ax® 4+ byt ezt=1
) as the typical surface, noting the modifications which are re-
<‘ V™ quired in the case of the paraboloids.

7-21. Intersection of a straight line with-a quadrie.
Let the equations of the straight linc be
. x=x" t't; '
y=y +mt,
g=z"+nt



C

h
3

'.."_, .
{ Smce also ax't4- byt ezt =1
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- Substituting for x, ¥, 2 in the equation of the surface, we obtain

the equation
{af? - b+ en? )24 2 (alx’ +bmy' +cn')
+(ax'+ by ez —1)=0,

a quadratic in £, Ience the surface is cut by an arbitrary straight
fine in two points, real, coincident, or imaginary.
If the point [+, ¥, 2] lies on the surface,

ax't+hy'ttex?=1,

and one root of the quadratic is £=o0. A
"e
7.22. Tangent at a point. _ O
If also alx’ +bmy’ +cnd’ =0, (1)

7

the other root of the quadratic in ? also vanishes;and the line
thercfore meets the surface in two coincident Pci’r{ts. Tt is said
to be = tangent at [x', ¥, &) 7.\

If the direction-cosines of the ling qrex\anowed to vary, con-
sistent with equation (1), the line ig'agyyﬁys perpendicular to t.he
direction [ax’, by, c¥'). Hence alkthe tangents at a given point
lic in onc plane. This plane.‘ié;‘célled the fangent-plane at the
point,-and the line through the point of contact perpendicular
to the tangent-plane is e&lled the normal.

7-224. The dir cftibr’;-cosines of the normal at [, % z'] are
therefore propartional to

P\ [ax', BY's cz'],

e \ud Y
and %xiquation of the tangent-plane at [x’, ¥ 218
O o () + By (y =)+ ¥ (z—z"}=0.

T,
NG

the equation of the tangent-plane can be written
7-222. ax'x+by'y+ez’E=1.

7-223. Exactly the s_arﬁe method applied to the equation of

the paraboloid
axt by t2cz=0
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gives for the equation in ¢ to determine the points of intersection
with a line
(al24 b+ 2cn) £ + 2 (ax' I+ By'm+ c3') ¢
+(ax'+ byt 4 2¢3"} =0,
The direction-cosines of the normal are [ax’, 8)', ¢], and the
equation of the tangent-plane at [%', ', 2] is
ax’x+by'y+c(z+2)=o0.
7-23. Tangeatial equation. \
The equation connecting the point-coordinates i, Y 2\] e~
presents the surface as a locus of points. Rcc1procallvme may
consider the surface as an envelope of planes and ingestigate the
equation connecting the coordinates [/, m, » §]\Of a variable
plane Ix+my+nz+p =0 which touches the 3Gtface
Let the point of contact of the plane\l':)e [x, v/, 1. The
equation of the tangent-plane at this p{m‘b is

ax x+byy+c¢.‘z— I.
Identifying this with the equatmn of the given plane we have

ax byl 1

I ~wi n p

But i"zié,’z1'-4";32’2—1-63'2: I,
: Ke

hence SN PlatmEfb4ntfe=p®

This is called the tangential equation of the quadnc

7-231. '{n a similar way it may be shown that the tangential
eqanﬂ* \of the paraboloid

ax*+by*+2cx=0

&3
S

(s . - PBlatmifb+2nplc=o0,

7-3. Pole and polaf.

The equation ax’x+by'y+cz’z=1 always represents a plane
whether the point {x", v', '] lies on the surface or not. When
it lies on the surface it is the tangent-plane, In general it is
called the polar-plane of [x', y', 2] with regard to the given
surface.
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7.81. The polar-plane of a point P=[x', ¥', z'] is the locus of
harmonic conjugates of P with regard to the surface.

Take any line through P and on it take a point Q=[x, ¥, 2}.
The line cuts the surface in two points X, ¥. Let one of these
X divide PQ in the ratio k: 1. The coordinates of X are then,
by Joachimsthal’s formulae,

ketal  hyty kst 2’
Fv1’ k1’ R+l
But X lies on the surface, therefore ‘
a(kx+x')2+b(ky+y’)2+c(kz+z’)2=(k+ 1)% O
je. Rrax?t+by*tea?—1) +2k(axx+by'y+ex'z—1} «
+ (ax:z + byfz + czrz . 1} “=35 ."‘.

This quadratic, which we call Joachimsthal’s ratio-eqg afibn, has
two roots k,; ky which correspond to the two points, X, Y.

If (P2, XY)isa harmonic range, X and ¥ divide PQ internally
and externally in equal ratios, hence kl—l-f?g‘\—-f 6, and therefore

ax'x+by'y+ c3' w3

This is the equation of the focus of harmonic conjugates and
represents the polar of P. ..:3;' "

7-32. If the join of two ppin’t’s'[xl, 1, 2] and [#2, 2, 2] Is cut
harmonically by the surf@e, each point lies on the polar of the

other, and :é{x;—!— bylyz t-cz 2= L

Two such points@ie valled conjugate points.

7.33. Pole of & plane. Conjugate planes.
The {Qlér.\of the point [, y', &) with respect to the quadric
O ax?+by?+cat=
is, N ax'x+bhyy-+cFE=1
\m Ldéntifying this equation with the equation of the general plane
x+my+nz+tp=0
ax' by & 1
we have T=nn >

Hence the pole of the plane xA-my+ngtp=0 is

! m ,_E}
[‘@’ THp
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'7.34, Two planes which have the property that ene passes
through the pole of the other are said to be conjugate. If
the plane lx+m'y+n'z+p =0 passes through the pole of the
plane
: Ix+my+nz+p=0

we have I la+mm [b+nn'fe=pp’.

As this equation is symmetrical in the two sets of coefficients
it follows that each plane contains the pole of the other. Thish
equation bears the same relation to the téngential equatig;r'j\'nat
the equation connecting the coordinates of the conjugate ,Bbints
bears to the point-equation, the left-hand side being'in zach
case the bilinear symmetrical expression correspending to the '
quadratic expression in the coordinates. \‘

The planes through the line of intersectiohof the two planes
[L, oy, 1y, P} and [, 7, 2, pe] form a- peticil of planes whose
equation 18 N

(Lx+my-+tmz+p) FAL N myy g+ i) =0
Tts coordinates may be represéx;t:éd by
AT, N,
w {“ prn =11, + Ay,

+$ )
\\..

N\

Pﬁ =n1 +;\H2’

pp =p1 -
If this variaﬁ)le plane is tangent to the quadric,

O N (g Mmoo+ (e NP fe = (0200
1 ,.e::§

A “\ '(?12;’a+ my2[b+ 1112/_6 —p2)+z2alhlfa+ iy b+ nymye —p1Pa)

N\ ) +7\2(322/ﬂ+mz2K5+ﬂf/'€—f3-f)=°-
This quadratic equation determines two values of A, A and Ay,
which correspond to the two tangent-planes passing through the
given line. The condition '

LLja+mymafb+mungfc=p1ps
is that the two planes should be harmonic conjugates with regard
to the two tangent-planes through their line of intersection.
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7-35. Tangent-cone,

If a plane be drawn through P touching the surface in 7', the
palar of 7, which is the tangent-plane at 7T, passes through P,
and therefore the polar-plane of P passes through T. Hence the
peints of contact of all tangent-planes through P lie in the polar
of %, These are also the points of contact of tangent-lines from
P to the surface.

The assemblage of all the tangent-lines through a point
Ple’, ¢, 21 is a cone with vertex P, called the tangent-cone. If
Qlx, v, 2] is any point on the tangent-cone, PQ is a tangenty,
and the two points X, Y in which PQ meets the surfdec”
coineide, Hence Joachimsthal’s equation has equal rogts,.dnd
therefore o \0

Q.

: K7,
{ax'+by'y+cz'z—1)? - \
= (a2 by'? 4 cx' — 1) (ax® + byt ez — 1)
This is the equation of the tangent-cone \{i‘fiz\v}:rtex [, ¥, &].
7-351. Rectangular hyperboloid. AV
Ex. x. Show that the locus of poing from which three mutually

2 =

rectangular tangent-lines can be drawy to the surface ax® + by -+ cxf =1
is .Y )
a(btc) a2 +b (c+aystc{a+byf=atb+e

Thé locus in question\{s the locus of vertices of rectangular
tangent-cones, The tan{&ni-cone with vertex [a', 3, 2] is

(ax’ %+ By y +c3’ g1 2= (ax' 2+ by +ee't - 1) (@ + by et 1),

or, say, P,
ay @byt + oy 2P of yw 2 + 2l xy +ete.=o.

Py ¢ _
The Q@dition that it should be rectangular is @, +b, + ¢, =0, and
this gi,ves the required equation in &', ¥', 7.

1£.8% b +¢ =0 the equation reduces to

a\" a2x3+52},2+€232=0,

which represents a virtual cone. The only rea_l point on the locqs
is the centre. In this case the asymptotic cone is rectangular, and is
the only real rectangular tangent-cone. The surface in this case 1s
called a rectangular hyperboloid.

Ex. 2. Discuss the nature of the locus in Ex, 1 according to the
values of a, &, ¢,
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7-352, Locus of points through which thyee mutually ovihogonal
tangent-planes can be draun to the quadric
_ ax®+ byt 4 cxt=1.
The locus in question is the locus of vertices of orthogonal
tangent-cones. Denoting for shortness

ax'®+ byt ezt —1
by F, we have
Q
oy =a*x'2—aF, etc., fi=bcy's’, ete.

The condition that the tangent-cone should’ be orthq’g'?m\al is
Z(be—fi)=o. A

Now blcl_'flﬂ:(523,'2_bF)(szrz_CF)__b%%ygg}g
=~ Fbe(by*+ex?—F)= I"Zig‘\(ax’g —1)

Ny

Hence the required condition is A
abc(x'24y"2+ 2’?}%«21’96.

The locus is therefore a sphere; Joneentric with the guadric.
This is called the orthoptic sphéie®. In the case of the ellipsoid
the orthoptic sphere is alway& teal and encloses the ellipsoid, but
in the case of the hyperboloids it may be virtual or a point-
sphere. In the last case'Tbe=o and the quadric is an orthogonal
hyperboloid, its asyfptotic cone being an orthogonal cone.

For the paralp{}io'd ax®+ by®+ 2cz = o the equation of the locus

is found to bo.2abz=c(a+b), which represents a plane.
2K

7-358,)Fhe enveloping cylinder. If the vertex of the cone
[+,9/%5.2 ] becomes a point at infinity the cone becomes a cylinder.
Lek the direction of the axis of the cylinder be [/, m, #]. Then

'.\Pfé [/, m, n, 0]. Using homogeneous coordinates x, ¥, %, @, the

AN

~equation of the cone becomes
(ax'x+by'y +cx'zs —w'w)?
=(ax'®+ by 4+ c2't —w'?) (ax® + by? + ez — ).
Substituting [x/, ¥/, 2/, @] =[!, m, n, o] this reduces to

(alx + bmy + cn2)? == (al? + bm? + cu?) (ax® -+ by + ¢2* — 1).
¥

* Tt is alse called the director sphere on the analogy of the director circle
of a conic, which reduces to the directrix in the case of the parabola,
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7.36. Polar of a line. If 4 and B arc two points on a line /,
the polar-planes , § of A4, B intersect in a line I'. Let C, Dbe
any two points on I'. Since the polars of 4 and B hoth pass
through € and D, the polars of C and D both pass through A
and B. Let P be any other point on [ 'Then the polars of C and
D both pass through P, hence the polar of P passcs through C
and 1. Ilence the polars of all points on I pass through 7', and,
reciprocally, the polars of all points on /' pass through /. fand
are called mutual polars. A

The polar of the line joining the points [¥;, Y1, %) and
[%ss 2, 3] is the linc of intersection of the two plancs & \)
asyx+hyytesnr=1, A

axyx+ by, y+ezr=1. N 3

The line I cuts the quadric in two points P, Q. Tlg}c\tangent-
planes at P and Q are the polars of P and Q. Hehde the polar of
[is the line of intersection of the tangent-plafieiat P and Q.

If 2 line intersects its polar the point afintersection, being on
its polar, lies on the surface; the pol'art-jpl’ane of this point thus
contains both the lines, which are thercefore tangents to the sur-
face. If a line coincides with .‘its'zlp'nlar it lics entirely on the

™

surface. N

Ex. 1. Show that the polafef'the line [7,m,n; 1, m', 0] with respect
to ax® +by2 +exd =118 L& Bl —cam’, —abn’; al, bm, cn]. :

Ex. 2. Show thit %e condition that the line {#, m, n3 I', ', 1]
should be a tangent to the quadric axt4byi+eat=1 (the “line-
equation”” of dheyuadric) is

Lal + bt cn® —bel't —cam—abn'*=o0.

Ex..g'.%S“how that the lines through [+, ¥, £'] which are perpendi-

cu'le\lf'm their polars form a cone Ya(b-e) (y-y)(z—3)=0-
\m 3 7.37. Polar tetrahedra. _

If ABCD is any tetrahedron the polar-plancs of the vertices
form another tetrahedron A'B'C'DY', and the polar-planes of
A', B, C’', D' are the faces of the former tetrahedron. Each
tetrahedron is the polar of the other. If a tetrahedron coincides
with its polar it is said to be self-polar. A self-polar tetrahedron
may be chosen in an infinite varicty of ways. The first vertex 4

SAG 9



130 PROPERTIES OF QUADRIC SURFACES [cnar.

has three degrees of freedom; the second vertex B may be any
point on the polar-plane of 4 and has therefore two degrees of
freedom ; the third vertex C lies on the polar-linc of 48 and has.
one degree of freedom ; and then the fourth vertex is determined.
We may say therefore that there are 00° self-polar tetrabedra.

7-38. Comnjugate lines.

If L and m ave two lines such that the polar of I cuis m then the
polar of m cuts I. Let I, the polar of 7, cut m in %, Then singgl
lies on. the polar of /, the pelar-plane of P contains /. Butsihce
P lies on m, the polar of m also lies in this plane and ;‘iiém‘fore
cuts . The two lines I, 7 are said to be conjugate with wespect to
the given quadric. N

Ex. If the quadric is #®+3® + 2% +w*=0, ShO}‘Kjﬁl‘\d}: the condition
that the two lines (p), (¢) should be conjugatajgy’

Porgor T Poadon+ Pusdos T Pesles “j?&tﬁh +Ppre = O

7-381. If 4, B, C, D are four pp;}i?s\suck that AR is conjugate
to CD and AC is conjugate to BDythen BC is conjugate to AD.

Let the four points be [x{,?&};{, 2w (=1, 2, 3, 4), and the
quadric S=x2+9*+22+w@=0. The polar of AB is the inter-
section of the planes Xx&=o0 and Sx,x=0; these planes both
contain a point of g&, say &= ¥+ Axy, etc. Hence A satisncs the
two equations \’

(B (x5 +Axg) =0, Zxp(wy+Axy)=0.
EliminatihgA we have
N

N\& 0, Ky . Tk Xy = 1Ky Xy L 2Ky Xz e

QSif?}]zlrly the condition that AC should be conjugate to BD is
N ) " ' Sty 2y D Xy = Ly Xy Dy X
\V  Therefore T X . Dy Xg = 2y Ky - L¥p X

which is the condition that BC should be conjugate to AD.

The tetrahedron ARCD is said to be self-conjugate with respect
to the given quadric. Since the twelve coordinates of the four
vertices are connected hy only two relations there are 00™ self-
conjugate tetrahedra. Every self-polar ‘tetrahedron 1s self-
conjugate, but not wice versa.
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7.382. 1f A'B'C’'D’ is the polar tetrahedron corresponding to
a self-conjugate tetrahedron ABCD each edge of the one tetra-
hedron intersects the similarly named cdge of the other.
Consider any two tetrahedra, without reference to any quadnc,
having these relationships of incidence. Denote the point of
intersection of BC and B'C’ by (23), that of AD and A'[) by
{14), and so on. Then the three points (23), (31) and (12) all lie
in both of the plancs 4BC and A'B'CY, and are therefore col-
linear. Hence the triangles ABC and A'B'CY, in different planes,
are in perspective, and AA°, BB, C'C’ are concurrent in a point,
0. Similarly A4', BB', DD’ are concurrent in O, Hence the))
{wo tetrahedra arc in perspective, i.e. if fwo tetrahedra are Galeh
that each edge of one cuts the corresponding edge of the atitesy ‘they
are in perspective. D

One condition is required in order that two giveﬁ‘}\mes should
intersect, and two conditions in order that a_gi¥en line should
pass through a given point, hencc in orderhdt two tetrahedra
should be in perspective five conditiong are'vequircd. It follows

that 1f two tefrahedra have five pairs of doryesponding edges incident

*

the sixth pair also are tncident.  J39

Ex. If two tetrabedra are mutir Ily polar with respect to 2 given
. . . NS . .
quadric and are also in perspechve, show that each is sclf-conjugate
with respect to the quadric{‘

R {
7-4. Diametral p@eé.

A line throughi.the centre is a diamelet, and is bisected at the
centre, A plangthrough the centre is a diametral plane.

Since th@Barmonic conjugate of the mid-point of a segment,
with r’egpﬁéi to the ends of the segment, 1s a point at infinity, the
polat*of the centre is the plane at infinity; and reciprocally the
pa‘!&i" of a point at infinity passes through the centre and is a

<‘§:liametra1 plane.

Hence the locus of the mid-points of a system of chords
parallel to [/, m, n] is a“diametral plane, the polar-plane of the
point at infinity [f, », #, cl.

Since a diameter passes through the centre its polar is a line
at infinity. Hence the polar-planes of all points on a diameter
have a common line at infinity and are therefore paraliel.

g-2
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" Let 4 be-any point, and « the polar-plane of A, and let the
diameter OA cut & in C. The polar of € is parallel to a, i.e. it
meets ¢ in a line at infinity. Hence C is the centre of the conic
in which « cuts the quadric. In particular if O4 cuts the quadric
in X, the tangent-plane at X is parallel to o.. Ilence the diameter
OX cuts all planes, which are parailel to the tangent-plane at X,
in the centres of the sections.

The diameter OX is said to be conjugate to the diametral plane
which is paralle] to the sections through whose centres O X passes.
Taking the equation of the surface .
axt-+by*+ea?=1, R\,
. . N
consider a diameter M
x:h‘, y:mi‘, x=mnt. "( )
The polar-plane of the point Z on this diapneter is
o afx%—brrzy—i—cm:(}. ’
For all values of # these planes are }@r}llel, and as ¢ ~oC we get
the diametral plane ANV
alx+ bmy’—'%' cHE=0
conjugate to [/, m, n}. N
7-41. To find the céntre of the section by the plane
o\ Ixrmyt+nzt+p=o

we may ﬁnd‘the\ﬁalc P of this plane, then OP cuts the plane in
the centre.£.The coordinates of P are found by identifying the
equation§'the plane with the equation of the polar of [+, 5, 2]

$

N ax's+by'y+ex’z-1=0,

libnz‘,e x'=—lIlap, v = —mjbp, 2'=—nlcp.

A\,

The freedom-equations of OF are
ax=MU, by=mt, cz=nt,
This line cuts the given plane where
t(Ba+mib+nifc)+p=o0;
whence the coordinates of the centre are given by

ax by ¢z ?

I m n  Platmib+nic
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7.411. The following alternative method is also useful.
"Take any point P=[x, 3, 2']. The freedom-equations of a
line through P are

x=x'+1lr, y=y +wmr, x=%"Fnr,
T'his line cuts the surface where

(al2+ bin? + cn?)r* +2(alx’+ By’ +ens'}r
+(ax't 4 by + i —1)=0.

If P is the mid-point of the chord through I we have

alx' +bmy’ +enz’=0. O\

N
7.442, If Pis a fixed point this equation determines the dirce-
tions of the chords which are bisected at P, and we find that all

P

these lines lie in the planc LV
ax’ (=) + by (y—y )+ ¥ (3—2) =8 v
This represents the section which has its ce{‘f{} at P.

7.418. If Pis a variable point and [Z, gy fixed direction the
equation o\
alx+ bmy +;§g’;~£ o
represents the locus of mid-}{q}nis of the system of chords
parallel to [/, m, 7], ie. thédiametral planc conjugate to this
direction. . i"\\

&
7-414. The equation
“xlz(*"?z’ixl)+by1(}'2-3"1)+"531(~"2—31)=0

connects ;b@?t@o points (%) and (x,) which have the unsym-
metrical préperty that the chord joining them is bisected at
(). JEN%p) is fixed and (x,) variable the locus of (x;) is that of
‘t'ba"ifﬁd-point of chords through the fixed point (xz}. "'he equa-
Qi(‘)ﬁ' of this locus is therefore

ax (%~ )+ by (3 =y ez —2)=0
fe. ale—lePb(y—p)e(s— b
=}{ax,® + by? + e2)’),
which represents a similar quadric with centre at the mid-point
of the radius-vector to ().

Q)
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7.42. Conjugate diameters.

The diametral plane alx+bdmy+enz=o0 is conjugate to the
direction [I, m, 1] and we say in particular that it is conjugate to
the diameter in that direction. Denote the point at infinity in
the direction [/, #, n] by P, and let P’ = [, m’, #', o] be any point
at infinity in the conjugate diametral plane. Then the polar of
P’ passes through P. Hence the diametral planc conjugate to
[, m', #'] contains P and therefore contains the diamcter OP.
Yet these two diametral planes interscct in OP”, where

N

P!\'E[ZJ’!’ m:." nﬂ, O] . o'\“\.
. . . .. . . ONNT
is the point at infinity in both planes. Then the diatabizal plane
conjugate to OP” contains both OF and OF". M¥¢ have then a
set of three diametral planes, each conjugate t6 fhc line of inter-
section of the other two. N\ '
2 42 42 AN
LS AR 10
@ b2 BN
and let Py={x, v1, &] be any pdi:m"on the surface, so that
. xl.sza2 - }k{g}-'ba +?:12::.-£2= 1.
The diametral plane conjugate to OF; is
xaepl@® + yy o+ fet=0.
Choose P,=[%,, ¥57%,] any point on the section by this plane, 80
that ‘ O ety b s Rt =

and o xafdt + 317/ + 2y 2/ =0

'T'ake the ellipsoid

The d}s\mgtral plane conjugate to OP, 1s
O~ Xy [ad -+ Y, B2+ 22, fcr =0,
“}?’l}ch passes through P,
/3% These two diametral planes cut in a diameter which cuts the

4\ Y4 . - |
V" surface in a point Py=[x;, ¥5, 2,]. We have then the two sets of
equations _
XpXs  VaVs | Bais PR T2
DRSS TR R 41 1 L=y
@ bt e 2Tt eTh
Xay , YsWi , Ba¥y x2S S
w g tta e mtEteTh
2%y V1Yo, BB OSI E-

Etp e ptprath
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If we put xyfa=Ay, 32fb= 1, Bnfe=m, €1C, these equations show
that Ay, pty, vy, €tc., are the direction-cosines of three mutually
perpendicular lines, and we have the derived relations (sce 29}

AT RASEAS=T, pyvyt pavy eV =0, CLCy
hence 2+ xtat=a, Y12+ YaZe T Y= 0

3’12"'}’22‘7'}’32:52» X T B Xy T %=

PR AL AL FilR X, ¥y F XYyt XYy = O

Q)

7.421. Lengths of conjugate diameters of an ellipsoid. O

OP12=x12+J’12+3121 ete., : s\
hence OP 2+ 0P+ OPP=a"+ b4 R N
K
7.422. Volume of the parallelepiped whose edges are three
conjugate semi-diameters. N

N
The volume of the parallelepiped whoselcorners arc lo, o, 0],

(%15 Y1s %], etc., DY

=3
il
b
5
2
2. -
o
il 972N

Squaring this determinm\t‘“we have

‘ X, Xy X |P= ‘ﬂx’\i:"ﬂxy Sxz ‘s'l @ o o [=athc,
yooye 3| PTye Ty XyE o & o
‘ I ‘ | o o & |

2o W ax Ty Z2F

Hence \\" V=abe.

%y T

7:&32\ ¢ the diametral planc alx+bmy +ng=0 of the surface

a.x%%??;y2+czzs 1 is perpendicular to the conjugate direction
<E,“'§n, 1] we have
al _bm_cn
T m o
o or a=h, and either n=0 or a=¢. Hence
o of the quantities /, m, n must vanish,
hich are perpendicular to their
dinate-planes. These are called

If [0, either m=
if a, b, careall unequal, tw
and the only diametral planes W
conjugate directions are the coor
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the principal diametral planes and the principal axes. 'They are the
only planes and axes of symmetry.

If a=h+¢, then n=o0. The surface is a surface of revolution,
the axis of revolution being the axis of 2, a principal axis. Any
diameter perpendicular to this is also a principal axis.

[f @=b=c¢, the surface is a sphere, and any diamcter is a
principal axis.

7-5. In the case of the hyperboloids the metrical relations €64
quire medification, and it is convenient to take together the two
- . + € N\
associated hyperboloids _
2 a2 52 A

X y t = i I. ( ~

These are separated from one another by.thic asymptotic cone

k2 y2 z? RN
_2+y_2_ T 0’..\\

at b A AV
Diameters which lie within this cénie’cut the hyperboloid of two
sheets in real points, but cut'thé hyperboloid of one sheet in

imaginary points. Diametefsilying outside this conc are inter-

“sectots of the hyperboloid of one sheet, and non-interscetors of

the hyperboloid of two‘sheets.
Let [I, m, n] be {he direction-cosines of a diameter within the
asymptotic coptx\fhen
@ Plat 4 m[b —nPfct <o, = — k-t say.
The conjugate diametral plane for either of the hyperboloids is
2\

\J Ix my nz
.~'§ 2rE T

~This cuts the hyperboloid of onc sheet in a real ellipse. The

.
\¥
\:

diameter [/, m, 7] cuts the hyperboloid of two sheets where
afl=yjm=z/n= £ (—Fla®— meib? -+ nfe?yt =1k,
and the equation of the tangent-plane at one of these points is
Ix/a®+my/b®*— nyfei=Fk"L :
The enveloping cylinder with axis [/, »1, #] of the hyperboloid
of one sheet is

(—x2a? —y2[b + 2P+ 1) = (lufa® + my[b* nz[c*)? k%,
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and this is cut by the tangent-plane in the same section as the
asymptotic cone (Fig. 345 T T

7.6. When a central quadric is re-
ferred to a sct of conjugate diameters
as coordinate-axcs (oblique) its equa-
ton is of the same form as when
referred to its principal axes. This
follows because each diametral plane
bisects all chords in the conjugate
direction.

The centre and the points at in-
finity on the three conjugate diameters
form a self-polar tetrahedron.

FEx. The ellipsoid with conjugate diameters the’lin'cs,\vﬁich bisect
pairs of opposite edges of 2 tetrahedron touches the edges at their
miid-points. RN

Let 4, 4'; B, B'; C, €' be the mid-poir{tfs;bf the edges, Then
BCB'C’ is a parallelogram, and therefore\BB® and CC’ intersect at
their mid-points. IHence A4’ BB, CCY € all concurrent at their
mid-points. Let the coordinates ofvd,c 4" be [£4, 0, ol, B, It
[0, b,0],2and C,C" [0, 0, + ¢]. Then,'referred to axcs 0A4,0B,0C,
the equation of the ellipsoid is’, }: »

%3 aihgt bt + 2% = 1.

The edge through i$.parallel to BC whose direction-ratios are
[o, &, —c]. Hence thewequations of this edge ate x=a, y/b+3fc=o.
But x=a is the tAngent-plane to the ellipsoid at 4, hence the edge
is a tangent toue surface.

77, Notanals.
Tbe%“ngent-plane at [x', 9, &']1is
AN ax'x+byy+er’s=1

’”\\ v
\_Hence the normal at this point is

I

v _y—y _Z0F

ax by &
771, Every novmal is perpendicular to fts polar, for the polar
of the normal at P lies in the tangent-plane at J>. Hence all the

normals which can be drawn from a given point P[X, Y, Z], not
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in general on the surface, are generators of the cone which con«
sists of the lines through P which are perpendicular to their
polars, i.e. the cone (7:36, Bx. 3)

X /1 1
L L L
“x-—Xl\b c) o

7.79  Number of normals which can be drawn from a given
point. .

- Q.
If the normal at [#', ', 2] passes through [X, ¥, Z],
4 ’ — 2 AN
)-(;x = 1—]-$=§ — =t, say, O
ax by ¥ - AN
therefore x X ! Y P Z.0
et 14 at’ Y EIvee Aol
But ax?+ byt ez = 14,
N
X2 b e
therefore aX r N

(Teatr T G BN
ie. (at+1)*(br+1){et+ I):’?;E’EaX%bt—i— 1)2(ct+ 1) =o0.

This is an equation of the§iXth degree in 2. Hence gix normals
may be drawn through.a given point.

7-73. The normﬁfis\at two points P,  do not i general inter-
sect, Suppose théy intersect in R. Let «, 8 be the tangent-
planes at P, Qyand y the polar of R. The polar of Pis =, and the
polar of @N§’B, hence the polar of PQ is the line (x58). Now the
planc.£’§f€ is perpendicular to both « and 8 and therefore per-
pep@cﬁlar to (¢f). This is therefore a condition that the normals
should intersect. All the lines through P which are perpendicular

*

L (Vo their polars form a cone, and this cone cuts the surface in 2

)

curve (of the fourth order).

The tangent-plane at P cuts the cone in two generating lines
which are such that each is perpendicular to its polar, but their
polars are also in the tangent-plane and have this same property
Hence each is the polar of the other, and the two generators are
perpendicular. Hence at any point £ on the surface there are
two directions in the surface (principal directions) such that the

normals at points near P cut the normal at P, and these tWo
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dircctions are at right angles. The curves on the surface which
have the property that normals to the surface at neighbouring
points on the curveintersectare called lines of curvature. Throu gh
every point on the surface there pass two lines of curvature, and
these are at right angles.

7.8. The paraboloids.

7.81. The diametral properties of the paraboloids are some-
what different from those of the central quadrics.

Let the equation of the surface be

ax®+ byt 4 2c3=0. R
'Che line wm I, y=y tmr, x=3Fur W >
cuts the surface where e ‘ R
_ a(lr+x"P+ b(mf+y’)2+26(nf+z’)?'9{\\
ie. (alP+bmP)rit2 (ax'l+by'm+cn)r \ !
+ (ax"2 08y + 2cx')=0.

If 7= o0 and m=o0, one root of this qu‘qﬁtﬁiic iz infinite, hence
all lines paraliel to the axis of z mekpithe surface in 2 point at
infinity. )

The point [x', ¥, #] will beithe mid-point of the chord if

| alx Dby’ +cn=o.
Hence if 1, m, 12 are giive};, ie. for a system of parallel chords, the
locus of the mid-p@ms is the plane

N

RS alx+bmy +en=10,

and this plaﬂéié parallel to the z-axis. We have therefore to con-
sider all@iﬁlﬁes parallel to the »-axis as diametral planes, and all
1ines§ar’allel to the z-axis as diameters, and hence the centre
muist be regarded as 2 point at infinity.

ANNIf the diametral plane alx+ by +on=0 1 perpendicular to

‘the conjugate direction [/, m, n), We have
al _bm_o
i~ m n
Hence, provided that a#b, #=9, and cither /=0 or m=o0.

Hence the two planes =0, y=0 are principal plancs. Ifa=b
we have a paraboloid of revolution and all planes through the

axis of & are principal planes.
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There is no diametral planc conjugate to the direction of the
z-axis [o, o, 1] except the plane at intinity, hut all sections
parallel to the planc of ay have their centros on thie z-axis; in

- particular the plane of xy is the tungent-plane 4t 0. Ois called

the veritex.

7.82. Normals to the paraboloids.
The tangent-plane at [x", ', 2] is

! r L '»\
ax'x +hy'y+c(z+3) =0, n
. 28 A
and freedom-equations of the normal arc AN
x=x(1- ul), ~\ g
y=9"(1-+ bt} D
) &

=5 +cl.

If the normal passes through the tiqux}: point 14, 1, AR
X = fyetpal),
Y=’y£(:{' + b1y,
ZSg ot

But ,?13;;?24*5}‘"-‘ 3 -0,
X2 py
hence &R by g
s aty (T by cao(Z -cii O \

This equati(ﬁ\\is of the fifth degree in £, hience Jive normals past
throughalgiven point. The sixth normal musi e the diamete

_ through'the given point. This counts as 2 nornil since the plan

#
2 N

™ ’.
N N

at;l\l'gﬁﬁlty 5 a tangent-plane_ [O, o, I, 01 IERNLE pflillt at inﬁmt}l
and the tangent there is w—=o.

7-9. EXAMPLES.

. 1. Find the equations of the tangent-pluivs t©

25— 0y 435t =3

Al

which pass through the line

X+gy—3x=0=3xv— 3y OHI-" 3
Ans. 42+6y+38=3, 20— 12y + g<

i' Ehowg that 2x—2y— 3x+8=0 15 u 1-.1n<;cnt—Plane
" el .
4% +y%—~ 92 =16, and find the point of contact.

Ans. [_'1!4) _% N
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3. 1f Zand " are polar-lines with respect to a quadric and the
common transversal through the centre meets thern in Pand P,
prove that the polar-plancs of P and P are parallel to both
land 7. '

4. Prove that the product of the lengths of a pair of oppositc
edges of a tetrahedron, sclf-polar with respect to a sphere, is in-
versely proportional to the chortest distance berween that pair.

- (Math. Trip. I, 1914.)

5. Prove that, if the chord which joins two points of the

ellipsoid O\
xbjad+yHbE R =1 N\

touches the ellipsoid N
xﬁf-'aﬁ +y2f-'b‘£ + 2’2{62= :]:, “"\ \..
the two points must lie at the extremities of cobjn@ate diameters

of the former, and the point of contact mustubisect the chord.
..&-‘Iath. Trip. I, 1915.)

6. Show that any set of three cquz;l:séﬁjugate diameters of the
ellipsoid whose equation is x%/a® £ (% +z)b*=1licona circular
come and that the cosine gfithe angle between any two is
(a® — b2)/(at+ 2b%). N (Math. Lrip. T, 1913.)

7. Show that the'p'lzﬁ\e through the extremities £, 0, R of

three conjugate disteters of the cllipsoid
PRSI + 2t 2t P=1
- AN
touches th{cHipsoid
Q" X% a4y b+ 2%fe

o

-1
- -3
at .t}fa;,\centrdid of the triangle POR.

’“\; ~\8 1f a point P be chosen on a line { such that the polar-plane

of P with respect to the quadric ax*+ by?+ext=1is parallel to/,
and [’ is the polar-line of [, prove that the plane through I and
the origin O cuts /in P. If the coordinates of P are [.Y, Y, AR
show that the plane through { and O cuts I’ in the point X/SaA%,
Y/ZaX?, Z{ZaX? and that the polar of this point is parallel
to .
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g. Show that the locus of points on the quadric
C axdbyidecat=1
the normals at which all intersect the straight line

(1~ X)l=(y—~ V)fm=(s—2)[n
is the curve of intersection with the quadric
El(b—c)yz%-z(mZ—nY)ax——-o.

10. Prove that the condition that all the normals ¢ thP\
ellipsoid x?fa?+y2 b2+ 2%[c*=1 at the points of intersection with
the plane lxja+myfb+nzfc=1 should intersect onc straighline
is S(mtu2 — B)(b?—c)?=0, and that if this condition i§ atistied
all the normals at the points of intersection \Vitii}thﬂ plane
sjal+y/bm+zfcn+1=0 will intersect the samg/gteight line.

~ Prove also that when I=m=n=1 the noph@ls'all intersect the
‘straight line a{p?— ¢ x=>b (ct—afy=c (a{-— o) 2.
t1. Prove that the six normais to..s‘[\ib quadric
' ax A by O
which pass through the poin,tfPE [X, ¥, Z] arc generators of
the cone N

SaX (o) y— V) -2)=o.

12. Show that the{Cohe in Fx. 11 contains also as generators
the line OP andghéJines through P parallel to the axes; also the
normal through> to its polar-plane. :

13 Shoge that the feet of the six normals from [X, Y, Z] to
the quadsie ax?-+by" + cxt=1 are the intersections of the surface
with, the cubic curve whose parametric equations are

Opr=X (x4 00 (1 6t), oo pro= (1 -+ at)(1 + B (1+cb)

T,
e

2\ 3 14. Show that the cubic curve in Fx. 13 lies on the cone
W s X (iD=
: x—X\b ¢ )
15.- If the quadricis a surface of revolution, show that there
are just four normals through a point and that they lie in 2.
meridian plane.
The other two normals have become isotropic lines through
the point in a plane perpendicular to the axis. :
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16. If the fect of three of the six normals drawn from a given
point to the quadric ax®+ by?+cz?=1 lie on the plane
Ix+my+ns+p=0
<how that the feet of the other three will lie on the plane
ax{l+byim+eefn—1/p=0.

17. Find the radius of a sphere concentric with an ellipsoid
of semi-axes @, b, ¢, such that an octahedron can be inscribed in
the ellipsoid and circumscribed about the sphere, and show that
if onc such octahedron cxists, an infinite number exist, all with
their diagonals intersccung at right angles at the centre.

Ans, r=abch/ZH N

\

(8. Show that, for the same radius as in Ex. 17, an ipﬁﬁi'i‘y of
parallclepipeds can be inscribed in the ellipsoid and ‘eircum-
scribed about the sphere. \%

19. Show that the condition that the planej\\;
Ix+my+nz=0"() -
should cut the cone O

ax®+ byt + o +2fyz +2pss + 2hxy =0
in two conjugate diameters of g@éfﬁuadric
Ax* £ ByP+ Cst =1
is (Bc+ Ch) .. —2dfmn— ... =0.
zo. Prove that tl‘fc\ﬁ-{lﬁition that the cone _
ax%—.gry‘z tea?+ 2fyx +2gux+2hxy =0
should have,ti{;ge" generating lincs coinciding with three con-
jugate dign{gitcrs of the quadric
O\ ™ Ax*+ By*+ O =1
is'..\u”,‘:' ajA-+b{B+c/C=0,
“and that if this condition is satistied there are an infinite number
\nf <uch triads of generating lines.

21, M [ mon; 1, w', n'] are line-coordinates of a normal to
the quadric axt+ by + ezt == 1 show that
i i’ '’ {XNalh - R i

Ae—a)(a—b)

alb—o) ble—a) cla—b) (-



CHAPTER VIII

THE REDUCTION OF YHE GENERAL
EQUATION OF THE SECOND DEGREE

81. We consider now the general equation of the second
degree in #, ¥, =, or the homogeneous equation in x, v, %, . The
surfaces represented must include the cllipsoid, hyperboloids,
and paraboloids, since their equations are of the sceond degrge.
The geometrical property which they have 1n commeorn ig thaf an
arbitrary straight line cuts the surface in two points, feal, coin-
cident, or imaginary. We call the general surface a gnadyic surface
or quadric. _ D

The general equation of the second degrcé‘i}l x, 3, 718

F(x, y, )= ax®+ by? + cx¥ 2 fyz + aghat 2hxy
+ 2{%5& 2gy+2rz+d=o0.
The homogeneous cquation is \»'ript::ﬁ more symmetrically, using
Xo, %y, %3, & for the coordinates, %

Aga X2+ oo k2B X+ .. =0,
or shortly S¥a, x,xm0 (F,5=0,1, 2, 3}
wherc* AN apy=dy,.

N\ . :

811. 'The equafign contains ten terms; the ratios of these
give nine independent constants whose values determine the
equation, We say that the constant-number of a quadric is g. The
condition(that the surface should pass through a given point
gives an quation which is linear and homogeneous in the ten
constdnts ; this is therefore called a linear condition. Nine such
qulations in general determine the ratios of the constants

_ (uniquely. Hence in general one quadric can be drawn to pass
N\ through nine given points.

" If three of the points lie on a straight line all points of this
straight line must lic on the surface (otherwise the line would
cut the surface in three points), and the line is a gencrating line
of the surface. If a second set of three points lie on another line

# There is no loss of generality in thiz assumption, for the sum of the two
- LB @y Xk Gup %, can always be replaced by 26,y %, %5 -
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which does not cut the first one, we have a second generating
line. "I'hree mutuaily skew lines therefore uniquely determine a
quadric. If two sets of three points lic on two intersecting lines
the six points may, so far as they serve to determine the quadric,
be replaced by five: the point of interscction, and any other
points, two on each line. We would then have an insufficient
number of points to determine the quadric.

8-12. Any plane section of a quadtic is a conic, for any line in
the plane of section cuts the surface, and thercfore the curve of Q
scction, in two points. ' A

Five coplanar points determine a conic. Any guadric \\'hiéh\“.\
passes through five given points in a plane 2z will contain ‘the
conic € which is determined by the five points; for thelpline
cuts the quadric in a conic, and since {his conic contdine the five
given points it must be the conic €. Hence if agnadric has to
pass through a given conic it has still 4 degrecgoffreedom. This
may be shown also as follows. Let the cq;ﬁ&ihc determined by
the two cquations =0 and I, =0, tholagger an equation of the
first degree representing the planc of e conic, the former an
equation of the sccond degree representing any quadric which
contains the conic. Then the cq'}laifir_m

Figet 1, 1. =0,
where Lisan expressiopioﬂthc first degree, represents any quadric
which containsthe co‘f\i’s,ﬁnchoutains four disposablcconstants.

If six of the points which determine a quadric lic in one plane,
either they al}.lié o one conic, in which case the quadric 1s not
fully determined; or the plane itself must form part of the
quadric; €l other three points then determine a sccond plane,
and the \quadric consists of these two planes,

.Jir:l.’brder that the quadric may be determinate no four of the
,\'"h:mé points may be collinear, not more than six may lic in one
plane, and not more than five on one conic.

8-13. A proper quadric cannot in general be made to pass
through two conics, for each conic requircs five data and there-
fore ten are given. But the planes of the two conics together
form a degenerate quadric which contains the two conics, and
this is in general the only quadric containing the two conics,

S5AG 10
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But if we cut a quadric by two planes we get two conics
through which a proper quadric passcs. These two plancs inter-
sect in a straight line, and this cuts the quadric in two points -
which are common to the two conics. Hence the condition that
two conics should be capable of having a proper quadric surface
passed through them is that they should have two points (real,
coincident, or imaginary) in common. Each of these requires
three other conditions to determine it, hence we have only
3+3+2=8 conditions. Hence if one quadric, other than 1o -
planes, can be drawn to pass through two conics, an Ll ntmber
can be drazom. All these quadrics touch onc another(i the two
common points, for the tangents to the two coni,c.s}‘a}e tangents
to each quadric, and the plane determined by thein 15 2 tangent-
plane to each quadric. N

Fx. 1. Prove that any two spheres havkdouhle contact with one
another. _ AN

The two spheres intersect in a cigeles They have also in cornmon
the circle at infinity. Therefore théyvouch in two points, viz, the
points I, J in which the circle cuts'the plane at infimty.

Ex. 2. Show that an infihity of quadrics can be drawn to pass
through two circles in pafaliel planes.

Ex. 3. Givena comchS in a plane ¢, and three points 4, B, C in
another plane §, tofeenstruct the conic which passes th rough 4, B, C
and the two points £, K (real or imaginary) in which S cuts the
plane 8, A\ '

When twb conics have two common points the two involutions,
determ’inéd\ %1 their common chord by pairs of conjugate points with
respecty ¢ the two conics, coincide, for they each have the two
CcoRIEnOn points as double-points. 'I'hus, even when the comnics inter-
gect'in imaginary points, the polars of any point on their common

Sehord intersect on that line.

Hence a solution of the problem is afforded as follows.

Let I be the line of intersection of « and 3. Projecting / to infinity
and at the same time S into a circle, the required conic becomes 2
cirele also, and its centre may be constructed in the usual way by
bisecting the joins of 4, B, C perpendicularly. Hence: we can
construct the pole of / with regard to the requircd comic in the
following way. Let BC cut I'in P and determine D the harmome
conjugate of P with respect to B, C. Let the polar of P with respect
‘to S cutlin P’. Similarly determine E, Fand ', R'. Then DF’, £,
FR' are concurrent in a point O, the pole of { with respect to.the
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required conie. Lot AC cut [in L and determine A, the harmonic
conjugate of A with respeet to O, L. Then A’ is also 2 point on the
required conic., Similarly we find £ on OB and C' on OC, and thus
six real points have been determined on the conic, and any number
of other points can be found by Pascal’s theoren.

§2. Conjugate points,

Let F(a, v, %, w)=0 be the equation of the quadric in homo-
geneous coordinates, and let P=[x, y, 5, w)and P’ = ',y 5, %)
be any two points. The coordinates of any point O on the line
PP are [ +Xx, 3+, 3+ A%, @' +Aw]. If this point lies on .

the quadric we have K, )
F(x +Xx, ¥ 44y, 8"+ A5, @'+ dw)=0, G\
e oF  oF | &F aF\ e
je. A F(;x, ¥, 2 w) + A (JC 5 +y F}—’, +2 P + ?"w')»"\\ _
LR, Y, 5, w)REY (1)

a quadratic giving the two points of intersc(;t'ip’y\\Q1 and Q, of the
line PP’ with the quadric, corresponding‘tﬁ.\the roots Ay and A,.
If (PP, Oy Q) 15 harmonic, A+ A, =8,vhence the condition
that P, P’ be conjugate points with g&spect to the quadric is
P OF | RS #F

el oyl dasSw, =0 e 2
ox’ yay' A\ F4 ow’ (2)
This relation is bilinear, 4nd symmetrical in x 3, & wand
¢ [ ' ’ N
K,y 2w e

: N\

8-21. If P isﬁxedéquation (2) represents the polar-plane of I,
If P, F ar@.\‘cénjugate points, and P’ lies on the surface,
equation (I){bgconles
\;”\.'“ AF(x, y, % w)=0.

Hen@ﬁtﬂer F{x,y, & w)=0o0r A=o. _

ol &22 In the first case equation (1) is identically satisfied.

\Hénce if Pand P’ are conjugate pointsand bath lieon the surface, the

Tine PP lies entively in the surface and is therefore a generating line.

8-23. In the second case, when the cquation reduces to A*=0,
PP’ meets the surface in two coincident points at £’ and is there-
fore a tangent. 'The locus of points P such that PP’ is a tangent
is represented by equation (2), which is therefore the equa-
tion of the tangeni-plane at P,

i0-2
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8231. The tangent-plane at P, like any plane, cuts the
quadric in a conic. Let]>be any point on this conic, Then since
P, P’ are conjugate points, both lying on the conie, every point
of the line PP also Hes on the surface. L'he conic therefore
breaks up into the line P£” and another line through P’. Hence
the tangent-plane at amy point cuts the surface i two generating
{ines.

8-24. The two lines /,, J, through P’ may be real and dissinet,
coincident, or imaginary, and the point /' is called accoxdihgly
a hyperbolic, parabolic, or elliptic point of the surfacea\

If 7, coincides with I, every line in the tangent-putie 7 at F
meets the surface in two coincident points, anﬂ 13 therefore a
tangent. = is then tangent at all points of 4 ~JLet O be any other
point on the surface, not on /. The tangt-plane at & cannot
contain J, but meets it in a point C, apd\JQ is a generating line.
There can be no other generating lige through Q, for this would
meet 7 in a point lying on the sugfabe and thercfore on /;. Hence
Q is also a parabolic point. Kot any other point the tangent-
plane must meet CQ) and'C;f’” in the same point, i.e. C. Hence
all the generating lines pags through one point €, and the surface
is a cone with vertex-C.

If /, and /, are vedl and distinct the tangent-plane at any other
point O meets&t\ﬁc’m in real and distinct points Ry, R, both con-
sugate to Qgnd lying in the surface. Hence QR and QOR, are
real andydigtinct generating lines. If [, and /; are imaginary, the
generaping lines through any other point are also imaginary.
Hesce if one point on the surface is a hyperbolic (elliptic) point,

£very point on the surface is hyperbolic (elliptic).

8-95. Since the relation between conjugate points P and '
is symmetrical it follows that cach point lies on the polar-plane
of the other. If «is a given plane and P its pole, the polar-planes
of all points on = pass through P.

If 7is a given line and P, Q two points on it, the polar-planes
« and B of P and Q determine a line 7. If P’ is any point on I
the polar-planes of P and Q both pass through P’ and therefore
the polar-plane of P’ passes through P and Q and therefore con-
tains I The two lines [ and ¥ are therefore such that the polar-
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plane of any point on one of them contains the other. Thesc are
called polar-fines.

If a line I cuts its polar I/ in P, P is conjugate to itself and
therefore lies on the surface. P is conjugate to cvery point in /
and in 7, hence [ and [’ are tangents to the surface, If ¢and ¢
are the generating lines through P, (#, I} is harmonic.

If  cuts the surface in P and Q the polar of Zis the intersection
of the tangent-plancs at P and O since these are the polar-planes
of these points. Let/, I’ be the generating lines through P and

m, m’ those through Q. Then I, " meet in a point P’, and I, m ¢

inapoint Q'. P'Qis the polar of £Q and cuts the surface in 4
and (. Hence when the generating lines are real two polar-ings
cither both cut the surface in real points or both in imai;iffary
points. If the surface has imaginary generators, and otfe finc cuts
the surface in real points P, (9, the polar-iing, beingrthe inter-
cection of the tangent-plancs at Pand (), cannotmget the surface
in real points. Hence, in this case, of two.g)}ar-lincs one Cuts
the surface in real points and the other imnaginaty points,

off
. =0 represent
it

el

8-31. "T'he equations y-=

the polar-plancs of the verticesF the tetrahedron of reference.
In general these form a tetpdfedron. In a special case they may
pass through one point.(Eliminating &, y, & @ between these
equations we obtain thescondition
.~~:~AE‘ a h g p.=o
\Y . _ :
O h B :
O fa
"\". g f ¢ ¥ |
\ p g v dl
Thig-determinant is called the diseriminant of the quadric. If
Cefx’, v 0s’, w']is the point through which the polar-planes all
pass, we have OF )
0=2X ap;,:zF(x',y',z,w’),
therefore C lies on the surface. If P=[, ¥, , &} is any other
point on the surface the equation (1) of 82 1 identically satisfied,
and hence the line CPlicsentirelyin thesurface. Thesurface there-
foreconsists of lines passing through C,andisaconewithvertex C.
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8.311. The quadric may be further specialised. I the polar-
planes all bave a line in common the quadric degencrates to two
planes passing through this linc. The condition for this is that
the matrix [A] should be of rank 2. Tf the matrix [A]is of rank 1,
all polar-planes coincide, and the quadric degeneraies to-two
coincident planes.

8-32, Invariants.

An invariant property of a geometrical figure is a property of
the figure which remains true when the figure is subjected to
some geometrical transformation. Analytically, the figi#g'is de- -
termined by certain equations in the coordinatcg,ni@l& a geo-
metrical transformation consists of a set of cquations by which
the coordinates are changed into a new systcih}An invariant is
then a function of the coefficients of the equations of the figure
which is unaltered by the transformatipn; or alternatively the
invariant property is represented by,\a}i equation in the co- '
efficients of the figure which is unhitered by the transformation.
These are not quite the same thihg. In the first case the functions
in question are absolute inva;riﬁhts; in the second we have to deal
with functions of the Qoeﬁicients whose ratios only remain un-
altered; these are relgtige invariants.

Thus when a pait.of points P, =[xy, y;], P2 = [% y,) it a plane
is subjected to,a linear transformation

27 e=heemy,
@ y=t

NS
thf;'%flctitm X; ¥, — Xy becomes

A () gy (lx Hmye) — (Lo + gy ) (Bxy my i)

= ({ymy— lLyim) (3 — 205y )

I Xy — %1 =0, then x4, —x' ¥ =0 also, i.c. the property

that the line joining the two points passes through the origin is
an invariant property for this transformation. 1f the trans-
formation is orthogonal, so that [, = cose, my=sina, 5= —sine,
my=cose, then Lmy—bm=1 and x¥s— %y is invariant; 1t
represents in fact double the area of the triangle OP1Fs.
Xi¥y— ¥p¥1 18 2D absolute tnvariant for the orthogonal trans-
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formation, but only a relative invariant, or simply an invariant,
for the general linear transformation. The factor
Lo, — Ly = o
ST omy
is called the modulus of the transformation.
Similarly in threc dimensions if the coordinates are subjected
to a linear transformation
s=Tx +my +m,
=l ' e,

g=la Fmy +ms \ N
the function Aslx v = s
. . P
| Xy Y2 R "'t
. ' (&
c Xy Yo % "’\
of the coordinates of three points becomes
| I ' oLy ’
Dhom omp px O Fig Ara
| ! o
vl omy My | X yz’.‘sg';
1 1 3  ° 1
Lomg m xS W vz, |

A js then an invariant and L igithe modulus of the transfor-

<

mation. - o

3

Ex. Interpret the equatibn A=o, and the value of the invariant
when the transformation.js, an orthogonal one.

8-33. Wenow, dé@'véﬁmmc preciscly an invariant as 2 function
I{a) of the cocfilsients, represented collectively by @, in the
equations whith’determine a figure, such that if o represent the
new coeﬂi{ﬁén}s after a linear transformation x,= =1,

N\ 8
AV I(a) =4 () 1(@)
thefector ¢ (/) being function of the constants ,, belonging to
{he'equations of cransformation. We shall prove that if L is the
Ydeterminant |1, | and I{a) & a polynomial function of &, then
b{l,) s a power of L. To prove this we shall require the
following:

8-331, Lovma. A determinant cannot be expressed as a product
of factors rational and integral as regards the clements .. For
suppose A=dip. Since A is linear in the elements of any row or
column, no element can be contained in both factors. Suppose
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that ¢ contains /,, and that ¢ contains Z,,. Then ¢ cannot contain
any of the elements ,,, or [, except [,;, and ¢ cannot contain any
of the clements I, or [, except £,,. Hence neither ¢ nor ¥ can
contain the elements 1, and I, which are both involved in A,
The factorisation is therefore impossible.

8:332. Now the inverse transformation, which expresses x
in terms of x, is

Lxs’zﬁﬁrsx, 1 N\
where L,, ig the colactor of [, in the determinant; hmuc\
Hay= (L, jL)I(a). AN
We have therefore y W
) b {Ldly=1. r N

Now &(Z,,) is rational and integral in Z,;, and g(;{ﬁrq.’L) is meonal
and integral in L,/L. The latter can he made’ 111tegral in L, by
multlpl\»mg by a power of L, say L*, @d then, 1., being ex-
pressed in terms of /,;, we have  { &

JUNRIUN T 2
But by the lemma the determislgnt L has no rational factors in
f.s, henee both ¢(7,,) and Hf{gfgt;s')’must be powers of L.
E¢{ly=L* wis call@f’.thc weight of the invariant 7,

8-34. Prolectlve nwarlant of the general quadric.

The general q\@drattc expression 224, X, &, is transformed by

the general finear equauons
P\ % =3l.x' (r=o0,1,2,3)

into a :Kl'}rﬂar expressmn

\§ T¥a,, x x, .

$The condition that the quadru, should be specialised as a cone
_is that the discriminant A= a,, | should vanish. 'This is clearly
an invariant property.

Now XZa,x.x,= EE((:”ZJNJCE’VE”% )
=ZZ-(a5jZl.;rxr'Elﬂxs 3
ij T g
=ZEEE a” I(,'?. Zj;_,x,.’x;.

it reE

Hence ar =X2a;l, =2, 5.
ij i g
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“'I'rite El}saijz'i‘is;

4
then ars":S!ir‘:is-

T

Hence the determinant

ANsfay |=1cm il el
But [ ers =1 [ 1o -
Therefore lay |=1an | [
ie. A =17, o
where L=l \‘\ '

Hence the discriminant A=|a,| is an invariant, an{i"'t?he
modulus of the transformation 18 L=\l.|. As tl‘mq“g'éncral
linear cquations represent the gencral projective trarfgfermation,
A is called a projectize invariant. \4

8.341. /A quadric cannot have an absolute p}nﬁ'ccfive inzariail
~ for the equations of the transformation gentain sixteen constants
{,; while the cquation of the quadrid eonitains only ten. Ttis
therefore possible in an infinite Va’r.ié‘,ty”éf ways to transform the
given quadratic EXpression (noppécéssarily by a reul transforma-
tion) into any other quadraticfgixiiression, provided only it is not
specialised ; projectively, any unspecialised quadric is equivalent
to any other unspecizglist;}i quadric.
8-342, [rom this\it\ can be deduced that a quadric cannot have
move than ong E::Egjéctive invariant. For if I and I, were two in-

variants, s that
:..;} I/=Lxt, and I=17L,

’§s.~: {]:'B_ _ {:rlﬁ
I2fm I‘z(x T

NS
~amd I,8/7,* would be an absolute invariant,

then®

8.35. Condition for real generating lines.

Since A is of the fourth degree in the coefficients, its sign will
remain always the same for any real transformation. The sign of
A is therefore an invariant for real projective transformations.

Let P be any point on the quadric. Take a tetrahedron of
reference with one vertex P=[1,0,0 o], and one plane the
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tangent-plane at P(w=o0). Then the equation of the quadric -
becomes

by + c2? 4 dw? + 2 fyx I 2pxw + 2qyie + 21888 = 0,
w=o cuts the surface where

by tea?+afyy=o.

This gives real lines if f2—bc>0. Now the discriminant of the
quadric is

A='o o o p =p*f*—bc). 7\
‘ c b f q A
I_o f e r| :‘.\"“.
p g v d Q0

™
Hence the condition for real gemevating lines(iythat the dis-
criminant should be positive. Conversely, if.“tﬁc discriminant is
positive, and the quadric has real points\,;it has also real lines,

8-4. Polarity. \ o

The relation of pole and polaivtvith regard to a quadric
establishes a (1, 1) correspondénc® or correlation of a dualistic
kind between points and pl@f}’es: lines and lines. To every point
corresponds a plane, to‘«e:{iéry plane a point, and to every line
another line. A

If the equation :Qfﬁhc quadric is written

TLa,x,x=0 (r,5=0,1,2,3),
where a,,=dq, the equation of the polar of the point
O (xo’s %y, %y %),
or sim’p’b"(x’), is ¥ a,.x, %= 0.
W'e\'“'é'ty represent a plane by its own coordinates, which are
proportional to the coefficients of %, #;, %, x5 in its cquation.

md ) Denoting the coordinates of the polar-plane of () by

\ }

gﬂ’! glr, 62,! §3’,
we have then S
£o' = oo Xyt G 20 T B Xp T+ A X3, €1C,
ar f?.'=za?.3x3 (?’ZO, I, 2, 3)
If 2 point lies on its own polar it lies on the quadric, and ifa
plane passes through its own polar it is a tangent-plane to the
quadric.
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8-41. Correlations.

(¥
(¥

We shall consider now the general dual correlation between
points and planes determined by the equations

‘grrzzanxs (?’=O, I, 2, 3)1 """ (l)

without making the assumption des=tar, that is we do not as-
sume any quadric to begin with,

T'o bring out the correlation more clearly we consider all the
points and planes twice over; we have a space S consisting of
points (x) and planes (£); to the points (x) correspond plangs, .
(¢} and to the planes (£) correspond points (x"), and these, fér?'n
a space S’ A

To determine the point (%) in S which corresporids o the
plane (£)in " we have to solve the equations (1)"1‘2{1'19} in terms
of &. Let D represent the determinant N4

D= g - o ”,t’,\\"‘
............. NS

| gy ...,(::39.’

and let 4,, denote the ‘cofactor,'gf’.ﬁm so that
Sa,d,=D, and Sa,Ap=0 if r#t
Multiplying the equatiphs (1) by Aoss Aies Avss A, respectively
and adding, we get.i:;\
L T @)
Now if ;hétféint () lies on the corresponding plane (£
Y&, %= o hince by (1)
\:\ SSa.x%,=0, (3)

and therefore (x) lies on a certain quadric F.

) If the plane (£7) passes through the corresponding point (),

> x, & =0, hence by (2}
TEALL L =0,
and therefore (£') is tangent 10 a certain quadric-envelope
=SS A, L f=0 o (4)

These two quadrics ¥ and @ are not in general the same. If
(x) lies on F then (£') is tangent 10 ® but not in general to F.
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To the point (x) in S corresponds the plane (£) in 8 where
£ =Ya,x,. If &’ are the current coordinates of a point on this
plane we have then

XY a,x %, =0.
This equation connects the coordinates of a point (x) in Sand a
point (x") which lies in the plane corresponding to (x}. If now
(x) is fixed and (x) variable this equation represents the tocus
of (x), a plane in S which corresponds to the point {(x} in S{
If &, are the coordinates of this plane (coeflicients of x;} we have
A\

"\
L 3 N

& r

EF P AesXr s
r

or, interchanging 7 and s,

f
£, =2a,x, .
8

s
< 3

A
Hence if the point (x) is considered as belonging to the space
S the corresponding plane is £, =X a,, 3y, b0t 1f (x) is considered
as belonging to the space S the corrégponding plane is
£ =N doRs.

& . . .

8-42. In order that the corrdlition may be a polarity the two
planes which correspond t@any point must coincide, llence the
eXpressions L, X, and oy, v, must be propertional and thetefore

i'“’\ Gy =g
where p is a constant factor,
Interchanging » and s,
\ } Qo= Pys-
Hence ) pi=1 and p= % 1.
\Iho"= +1, @y.=a,, and we have a polarify.

.{f.:‘B-tlS. If p= —1, @py= —dyy, ,,=0. In this case Fand ® do

\”\3 Jnot exist since their coeflicients all vanish. Every point lies on

its corresponding plane and vice versa. "The correlation in this
case is called a null-system.

8431, 'The term “nuli-system” is derived from statics. Any
system of forces in three dimensions can be reduced to three forces
X, Y, Z, acting along three arbitrarily chosen rectangular axes,
together with three couples L, M, N in the three coordinate-planes. -
If P=[«", ¥, #'] is any point the moments about axes through £
parallel to the coordinate-axes arc L-Zy + Y4, M_—Xz’—kzx',
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N-— Yxi-{-Xy’, and the plane through P whose dircction-cosines are
proportional to these three moments has the property that the sum
of the moments about any line through P in this plane is zero; it isa
audl plane. Using homogeneous coordinates, if P=[v, v, ¥, w] and
the plane is & w+ny+{z+ w'w=0 we have

= — Zy+ Yz Le,

o= Zx — X+ M,

pll=—-Yx+ Xy + N,

pw' = — Lx—My— Nz,

These equatiops determine a nuli-system. O\

8-432. In a pull-system, if (x) and (y) are any two poini@on a
line 1, the plane corresponding to a varigble point(on /, say
(x+1y), 18 <§i'

& =Ty (%5t ys) =Xg, %t DR €r+ s
and this passes through the fixed line I’ imvhich the planes (&
and (n) intersect. Thus to a line / corr{:&\pb’nds a unique line 7,
as in a polarity. If the coordinates of™ are (p) and those of I
are (p") we have N '

~
N

st( = fn"‘h"fﬂ]o ~.':'.:;
= (ag ¥+ ap¥t ags) (GuYot @uyat i13Ys)
- (am%~+ By ¥z 13 Xs) (o yy+ duzy2t A V)
L =am (anlﬁol'*:émﬁoz‘i‘ ton Pos+ GoaPant P + i)
\ ot ane“:n"““n::atz)f’ws ce.
"The lines ,g@na 7' will coincide if
\ ‘ TagPi=o
This li;f}éar equation determines a linear complex of the most
oericrdl form. Hence 2 linear complex consists of the self-
.”\dijircsponding lines of a null-system. If the polar-planc of P
™\ _Contains { it contains the line PQ; then reciprocally the polar-
planc of () contains P and therefore also contains the line PQ.
The self-corresponding lines are thus the lines through any
point and lying in the polar-plane of the point.
We have assumed that

dm a2s+aozaal+ansa1z

is not zero. If this vanishes, Poy 18 proportional to &y . Thus
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there is a line whose coordinates are (a), and this line corre-
sponds to every line of the null-system except such as make
Sa;;pi=0; but these are the lines which intersect {4}, and the
lines which correspond to these are indeterminate. In this case
Sa,5pe=0 represents a special lincar complex consisting of all
the lines which cut & fixed line (the directrix).

8-51. Canonical equation of a quadric.
If we choose as the fundamental tetrahedron A, A, A, 45%0ne

which is self-polar with respect to the quadric, i.e. so ghat'the
polar of the point |1, 0, 9, o] is the plane [1, 0,0, 0y :m(\i"-so on,

we have a,,= o where 7 #£5, and the equation redugss 15 the form
N

@y gt A P 4 Gy ? + g ¥g™ = 00y

If the coefficients are all of the same siﬁn\,\the quadric can
have no real points, and is therefore zirtudh There are nwo other
cases according to the number of negative signs.

Changing the notation, supposa(the equation to be

. ﬂzxz_i_bzyc_’t;z:z:{_,dzwz_zol
'This may be written o8 '
(ax—c2)(ax 4 22) = (dow — by) {(dw + by)

and is satisfied by cither '

(ax—c3) =}I{}‘w —by)i (ax —cz) = p(dw+ byl
Max+ )= (dw+by)] O ploxtes)= (dw—by)i
where A apg\pt are any paramcters. Ilence the systems of lines
repres;:nﬁe\d by these pairs of equations lie entirely in the suf-

face~ Xhe surface in this case has real generating lines.

\Q{ ‘the equation is
™D atxt4 bRyttt — APt =0

' the plane w=o0 meets the surface in no real points and hence

there can be no real lines on the surface.

8-52, Specialised and degenerate quadrics.
1f onc of the coefficients of the canonical equation, say 4o is
zero, the polar-plane of any point &’ is
@y %y 3, - s Xy A3 X5 X3 =0
and passes through the fixed point 4,={1, 0, 0, 0), which lies

" on the quadric. If P is any point on the quadric, 4, and P ar€
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conjugate and therefore the line A, P lies entirely in the quadric.
‘The, quadric therefore consists of a cone with vertex g,

If two of the coefficients vanish, say &, and 4, the cquation

ces
reduces to 4,550 235 =0

which represents fwo planes.
If three of the coeflivients vanish it reduces to two cotncident
planes.

§53. Projective classification of comics.
Before completing the projective classification of quadrics itwillA
be useful to do the same for conies. We consider the general cqn{c\“.\
S=axt by +cat+2fyz+ogan2hxy=0. y

‘The conic has one projective invariant, viz, the digcﬁmihant
A
Dz] a h g |i. ”‘\
v h b \
| g f fc | D

That this is an invariant is proved in tife bame way as for the
quadric (see 8-34), and its vanishing i$"the condition that the
conic should degenerate to two straight lines. We denote as usual
the cofactors of each element of this determinant by the corre-
sponding capital letter. We. have identically
aS=(ax+ hy—}gz 24 (Cy® —2lyz + B,
The discriminant of\ﬁ‘jiz—-szs—szz is BC —I*=aD), and if
D=0, § is the suyor difference of two squares. If also B=o,
then F and Hhgdnish since F*=BC and H* =AB. If D=0 and
A and B both *vanish, then all the minors of the determinant
vanishaSihce also G2= 4B, it follows that 4, B, C are all of the
sam’e.'s'ign (or zero). Hence we deduce the results:
¢ ’&’531. When the matrix [D] is of rank 2, S =0 represenis two
“Witinct straight lines, which are real if no one of 4, B, C1s pusitive,
imaginary if no one of 4, B, C is negative (one may be zero).
8-532. When the matrix [D] 1s of rank 1, S=o0 represents two
cotncident lines.
We shall assume now that D o. Consider the pencil of lines
z=2>y. The intersections \with the conic are given by the equation
ax2+z(Ag+iz)xy+(c)l2+zj?x+b)y*=o. ...... (1)
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"The discriminant of this quadratic in xfy is
(Ag+ )2 —a(cA?+2fA+b)= — B taFA-CL L (2)

The roots of equation (1) are real or imaginary according as (2}
is positive or negative. If the quadratic (2) has real roots there are
two critical values of A which separate the lines of the pencil into
those which cut the conic and those which do not. The con-
dition for this is BC —F?<o,i.e. aD <o. In this case the conic
is real and the vertex [1, o, o] of the pencil is outside. 2N

If aD > o the roots of (2) are imaginary, and this quadratit is
of fixed sign, + or — according as B and C are buth)y- or
both -+. In the former case the lines of the penqiiléﬁl cut the
conic in real points; the conic is real, and the poing’[1, o, o] is
inside. In the other case the lines of the pem{llﬁ’ll cut the conic
in imaginary points, and the conic is virtudl)

If a=o the point [1, 0, ©] lies on thtkconic, and the conic 18
real, D

Hence we deduce the result 53X

"

W

8.533. When the matrix [B) is of rank 3, S=0 represents ¢
proper conic, which is wirtial if ab, bD, ¢, A, B, C are all
positive; otherwise it is ¥6al.

Ex. When the coule f{(x, y, £}=o0 is real, prove that the point
[x, ¥, 5] is insi%{ﬁt’outside according as D.f {x, v, ) is positive of
negative.

8-54, :P.x‘f'(ii“ective classification of quadrics.

'Ijh\c}éneral quadric

\\ Dy X Xy =0

L\ - . . . ) .
“whas one projective mvariant, Viz. the discriminant

A=|a.l,

and its vanishing is the condition that the quadric should be
a cone. The cone may be real or virtual, and in either cast
there is one rcal point, viz. the vertex, whose coordinates are
(4 An» Aigs A), where  may beo, 1,201 3 (provided thest
four minors are not all zero). If Ay, =o it follows (when A=0)
that Ay;, Ay and Ay also vanish; the vertex of the cone then
lies on x,=o0. The condition for a virtual cone is that any plané
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not through the vertex, should cut the cone in a virtual conic.
Hence by 8333 if none of the minors vanish all the quantities
a4, and aga;—a,t ({# =0, 1, 2, 3} must be positive.

If all the minors vanish the quadric degencrates to two plancs,
their intersection being a real line; and if all the minors of the
sccond order vanish, the quadric degenerates to two coincident
planes.

Hence we deduce the results:

8.541. When the matrix [A] is of rank 3, the quadiic is a cone,
whz‘ch. 1s virtual 1f no one of the quantilies ag A, aaa,—al’ r}',\:\
negative, otherwise it 18 real. 2%

8.542. When the matrix [A)is of rank 2, the quadric degencxates
to two distinct planes, which are imaginary if no one of thequan-

i L

fities @y a;;— . 15 negative, otherwise they are reahy s\

8-543. When the matrix [A] s of rank 1, the quadxiv degenerates
{0 twa cotncident planes. ,=1\\'

We shall now suppose that A#o. Thesdiscriminant of the
canonical equation i8 &, 8245, and thr::s:igh of the discriminant
< an invariant for real transformatiafiss If A>o, the signs of the
cocfficients ag, &, &g, @3 8I€ Bith(:’r:(”f)‘all the same, in which case
the quadric is virtual, or (2) t¥0 positive and two negative, in
which case the quadric has(real generating lines. If A<o, the
signs are either one negéfive and three positive, Or One PosItive
and three negative; iffeither case the quadric has real points but
imaginary lincs. O

Suppose firgtthat A >o. 'The quadric is then cither virtual or
with real geberiting lines according as any one planc scction 18
virtual j&tu veal. Taking the sections Xp=0, ..., xy=o0, and
applyitlg 8-533, we obtain the results:
~ ®Ba4. When A> o, the quadric ts wirinal if «ll the quantities

\a,},—ﬁ;j ,Qusdl,; — @t are posifive, otherwise it has real generating lines,

8-545. When A <o, the quadric has veal points but imaginary

lines.

Ex. 1. If a quadric has real generating lines prove that the tangent-
planes through a given line are real or imaginary according as the
line cuts the quadric in real or imaginary points, and wice versa for a
real quadric with imaginary gencrating lines.

EAG T1
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Ex. 2. For a quadric with real generating lines prove that of two
non-intersecting polar-lincs either both cut the surtace in real points
or neither does.

Ex. 3. A real quadric S=x% 3% 4 st —a? =0 whes generating
lines are imaginary divides space yuto two regions, the interior for
S <o and the exterior for §>0. Every line through an interior point
cuts the quadric in real points, and through a line which lies entirely
in the exterior region pass two real tangent-plancs.

Ex. 4. A quadric whose generating lincs are real dees not digid® .
space projectively into two regions. A

By the real collineation px' =z, py =w,p3 =X, pi’ = v the le?rf;Esion
SzEatyt—at—w® s transformed into —.5. '"This trunsfhpzhation i
not a perspective transformation or homelogey in witeli” there 18 2
fixed centre and a plane of fixed points; in this trapgfarhastion, which
is sometimes called a skew nvolution, there aye}@‘o lines of fixed -

poiats x=g, y =w and x= —g, y= —w. Thete 180 actusl nomology
which will change S into —.S. AV
Ex. 5. Verify that ~N\

.
A

F s,y w) = (a Ty g BT o (Cy = Pt {ag =R} F

P\ T
A\ TCh, !
where C=ab—A* Figh—af, and 1, R; arc the cofactors of d,7in
the determinant &L )

A
(D3 —Ryw)P+ 5 wh

8.6. We h:a% now to consider the quadric in its metrical
aspect, tlla(c'is'in relation to the plane at infinity. :

If Cisithe pole of the plane at infinity, the polar-planes of all
po'\nfsfat infinity pass through C. And since the harmonic con-
jdgdte of the point at infinity on the join of two points I, {18
Athe mid-point of PQ, all chords through € are bisected at C.

N\ . ] .
~LJ Cis therefore the centre of symmectry, or centre, of the quadric,

planes through C are digmetral planes, chords through C art
diameters.

§-61. Diametral planes.
. - . F 4
Since the equation of the polar-plane of [, y, &, w'] 15
symmetrical in the two scts of coordinates, it can be written 2lso

in the form JOF ,0F  _,8F . OF
% ety et W s =0
g oy oz dw
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Let w=o represent the planc at infinity, then the polar-plane of
the point at infinity [, ¥, 2', o} is

x f—F y' EE-H:’ aJF—o.

. 6% gy " oz
"Phis is the diametral plane conjugate to the divection [x', ¥, "

8.62. For all values of &', ¥', &' this represents a plane through
the common point of the three plancs
oF ar oF
) =0

=0 .
ox gy T ox ’

N
A
or shortly F,, F,, F,. This point is the centre C. The thfty
planes Fy=o, I,=0, F,=o0 are the diametral planes coujl.}gu’tc
to the dircctions of the coordinate-axes, AN 2

p¥¢ 2

o
8.63. The conic at infinity on a quadric. \/

The plane at infinity =0 cuts the quadrig,jnja conic whosc

equations arc R
flx, 3, R)=axt+ by + o=+ 2fyzj1-;2j§z£ + zhxy = o} .
The discriminant of the first eqqatﬁit;ﬁ“is w=e
D= af;i’z' gl
Db S
ONe 7 o«
A :

If P = o, the conic breaks up into two straight lines, The plane at
infinity is then g\'f:ingeht-planc. No significance is attachable to
the sign of D.gkben it is not zero, since its sign would be changed
by changing %he signs of all the coefficients. If D+ o the conic
is cither\d feal proper conic or virtual. For a conic at infinity
thergyls' no distinction corresponding to ellipse, parabola or
hypérbola, for this refers to the nature of its intersections with
\the line at infinity in its planc. As the equation by itsclf represents
a cone we see also that cones are distinguished only as real or
virtual. The section of a real cone may be any type of conic.
By 853 we obtain the following criteria for the nature of the
conic at infinity:
If the matrix [D] is of rank 3, the conic at infinity is virtual if
aD, bD, D, 4, B, C are all positive, otherwise 1t is real; if the
I1-2
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matrix [D] is of rank 2, the conic becomes two straight lines
which are real if no one of 4, B, C is positive, imaginuary if no
one of 4, B, C is negative; and if the matrix [£)] is of rank 1, the
conic reduces to two coincident lines.

8:64. Metrical classification of quadrics.

(A) If the three planes F,, F,, F, have in common 2 unique
finite point C, the surface is called a central quadric. Thisis ¢
general case, no special condition being assigned except that
D#o. : (\)

If A=o the quadric is specialised as a cone. O

If A <o the quadric has real points and imaginarylines, and -
is either an ellipsoid or a hyperboloid of two sheets.

If A> o the quadric is either virtual, or a fiperboloid of one
sheet, '

To distinguish these further we cons,id‘& “whether the section
by the plane at infinity is real or.wivtual. Hencc by the last
paragraph we obtain the results: ()"

A>o,aD, bD, D, 4, B, C allpesitive. Virtual quadric.

”» » oot all positive. IIyperboloid of one
_ 3V sheet.
A<o, " A all positive. Ellipsoid.
T o\’\,,’ not all positive. Hyperbolotd of o
R N sheets,
A=o, ‘.\'5,:-" e all positive. Virtual cone,
A s» . notall positive. Real cone.

{B) ¥ the three planes F,, F,, F, have in common a unique
paintat infinity, all diameters pass through this point at infinity
\an,d are therefore parallel. Further, since the polar-plane of €
~\ passes through C, C is a point on the surface, and the plane at
g H}ﬁmty is the tangent-plane at C. The surface is a paraboloid.
The analyt.ical condition that C should be a point at infinity is
D=o. The conic at mnfinity then becomes a pair of straight

1 i : . .
lne.s » real or imaginary according as 4, B, C are negative or
positive, ' '

D=0, 4, B, C all positive. Elliptic paraboloid.
»  all negative. Hyperbolic paraboloid.
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(C) if the planes I, F,, F, have in common a urque finite
line, there is no unique centre, but a line of centres or axis, The
surface is a cylinder, elliptic or hyperbolic. The condition is that

the matrix a kg p
'»fz b fog
Lg J ¢ r

should be of rank 2. Ttis equivalent to the two conditions A == o,
D= 0. As in the. case of the paraboloid, the conic at infinity again,
breaks up into two straight lines, real in the case of the hyp\éi’-".\
bolic cylinder, imaginary in the case of the elliptic cylinder
A=o, D=o, 4, B, C all positive, Elliptic evlindg
. all negative. Hyperbolic eylinder.

If the matrix [A] is of rank 2, the quadric degenerates to two
planes, xeal or imaginary according as 4, B, ¢ P all negative or
all pesitive (three conditions). R4S

(D) If the planes I, F,, F, have in Sememon a unique line at
infmity the surface is a parabolic cylindgst. The condition is that
the matx a k. é’:'& %

h Y ¢
&Y e

Ao o o 1
should be of rank 2y and this is equivalent to the condition that
the matrix [D] shenld be of rank 1. The conic at infinity then
reduces to two! :c?:lincident straight lines, This is equivalent to
the three copnditions D=0, A=o0, B=o.

A %D =0, d=0, B=0, C=o0. Parabolic cylinder.

(E).H the planes F,, F,, F, coincide, forming a finite plane,
W&:f“ﬁa\;e a plane of centres. The surface degenerates to two
Dapillel planes. 'The condition is that the matrix

a h g p
A b f g
g f e r

should be of rank 1. 'This is equivalent to the conditions that the
matrix [A] should be of rank z and 4, B, C be all zero.
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(F) If the planes F,, F,, F, all coincide with the plane at

infinity, the surface degenerates to the plane at infinizy and

another plane. The condition is that the matrix [D] shouid be of

rank o, i.e. that all the coefficients «, b, ¢, f, &, & should vanish.
(G) If the matrix a h g p

&
B b f g
g f e vl 3
18 of rank ¢ the quadric reduces to the plane ar fnfintty f'afic\
8:65. Primcipal diametrat planes. N

A diametral plane is said to be a principal plane fwhen it is
perpendicular to its conjugate direction, and this\direction is
called a principal direction. AN\

The direction-cosines of the diametral plasie ¢onjugate to the
direction [/, m, n] ate proportional to PN .

o o ALE

ol’ om’ on™
ie. al+hm-tgn, hitbmifn, . glt fin+cn,
Henceif {1, m, #] is a principabidirection

a+lbmten M+ fn gl+fmyen A
A T A

These give two hon;qg%neous equations in , m, n, and therefore
there are a finite h@nilﬂer of principal directions.

We have “:l(a~).)l+km . Fgn =0,

NOH G- Xymt fr =0,
T gl + fm +{c=Xn=o,
Elirqi@t}ﬁg Lmn

QO ta=d B o

_d =O,
w\;\';/ h b—-X f
\‘;"' g f £—X |
ie. }.3—(a+b+c))l2+(A+B+C))1-D=o,
where A=be—f2, D=la n g|.
B=ca-g, b f|
C=ab-}2, g f ¢

This equation, which is called the Dis

criminating cubic, gives
three values fo; A, and hence we get thre

¢ sets of values of /, m, 7.
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871, The roots of the disciiminating cubic ave all real.
Asseme a= b= ¢, and let
A=A~ (a+b+ )R+ (A+B+C)A-D

=(A-=a) {(A=-B)(A—0) =3~ {(A-b)g + (A=} A2+ 2fgh},

Consider also the function

HN= Q=) (A=)

When A =—w, ¢ b +oo, ¢
H(A)=+00, —f% —f2, toco, O\
Fence i (A) =0 has real roots «, 8 such that e\
—w<B<e<b<a< +o0, N\ )
Then b ()= — {{a—b)g"+ (a2 — ) B2+ 2feh}, D)

and since (a~b)(2—c)=F7, $(a) is a perfect squate, viz.

: (a=0)d(e)= —{(a—L)g +/R}%
and similarly for ¢(8). Hence ¢(a) <o anE (B)=o.
Hence aubatltutmg in ¢(A), when S\
A= —om, B\ .‘o_é', + o5,
pAis - O -+
Hence the equation ¢(A)=o, has three real roots, separated by «
and f. We have supposedrthat o2 8. When «= 8, we must have
(b—c)?+4f*=0, hencq A= and f=o. Then
)=\ — A= by e+ (A=)
=ALHIA-a)(A-b)~(g*+ A}
(0% By~ (a+b),\+ab — gt k%
(OB Hat+ b —{a—bp-g—k].
hcn::e:%ec roots of ¢(A}=0 are all real. One root is b(=c), one
18 < hand the remaining one is > &.

9*’?2 Multiple roots of the discriminating cubic.

\ The occurrence of repeated roots of the equation is connected
with the rank of the matrix [D]. The result is stated most con-
veniently for the general equation of this form, viz,

D)= dll“’“}" 3 vee Op =0,
ay, V9 S ‘
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which is called the characteristic equation of the square matrix
[@anl; 1t 1s sometimes called the sectdar equation as it arises in

- astronomy in connection with the secular perturbations of

N

planets. The general theorem, which is due to Weierstrass, is as
follows: '

If Mis a p-repeated voot of the characteristic equation, when this
value s substituted the matrix [D(X)] isof rankn— p; and conzersely
and the proof depends upon the lemma: N

8721, If m is the vank of a symmetrical matrix, the prodlichof
two principal detevminants of order m is equal to the sijwe of
another determinant of order m of the matrix; and further the sum
of all the principal determinants of order m cannot dupish.

‘We shall consider only the determinant of\ghes third order

D=ia & g \
: N
LRI
g [ e

If the matrix [D] is of rank 3, D#4." If it is of rank 2, D=0, but
the minors of the second ordefido net all vanish. In this case
we have BC—~F?=qD, etcyie. BC=F?, C4=G2, AB— H?, as
stated in the lemma, Eosther, A+ B+ € cannot vanish, for on
squaring we obtaing#%-4+ B2+ C+ 2(F2 4 G®+ H?), which can
only vanish if all’the’Second-order minors vanish.

If {D] is of rahls 1, all the second-order minors vanish, so that

be={f?, ca=g&lab=h2. Buta+ b+ ¢ cannot vanish, for on squar-

ing this Me.obtain X a+ 2Tf2% which can only vanish if all the
elements vanish.
Now consider the equation

&

N D)=, a+} & g |-o.
|

‘ B be) f
_ g PR
For the values Ay, Ay, A, the determinant vanishes and [D(A)] is

of rank 2 at most. The condition for equal roots is that both

hD (A)=oand D '(A)=o. But, differentiating with regard to A, we
ave _ :

D' (N)=a+ By,
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where 2, 8, y are the principal minors, ie. a=((b+A)(c+A)—f2,
etc. Now by the above results if [D(A)] is of rank 2, .+ 8+y
cannot vanish, and henee the roots are all uneqgual.
£ [#2(A)] is of rank 1, , B and y all vanish and D'(})=

Henee there are equal roots. The condition for three equal roots
is further

o=D"(A)=z2{{a+A)+(B+2)+{c+A}},
but this, being the sum of the principal minors of first order,
cannat vanish unless the determinant is of rank o, A

B
8-72%, Hence (1) of [D(X)] is of rank 3, X is not a root, (2)
[D(A}] is of rank 2, A is a simple root, (3) zf[D()\)} is of rank’z, A
&5 a doulle voot, and (4) if [D(A)] & of rank o, Ais a mp!e ¥oot,

893, The three principal directions are in genem}mumah‘y at

right anples. We have
o Uy
-a-{l:aﬂzéfzzk’".\

I m =n

W

where A is a root of the discriminating cubic,
Since f is a homogeneous quadra'tic indmn

LY gt ﬁ-zgf él

cm_g " iy e 28?31

Hence 2M,(L4, +m the -’}-nlng)u—z?tl(i L+ mym + myny).

Therefore, prov 1dec\hp—}nz, '
& i LG mymytmn=o0,

In the alté\ﬂiat, ve case Ay = A, we shall see (8-g) that the surface,
if real, is & surface of revolution, and any diameter perpendicular
1o the\:a}ls of rotation is a principal axis.

A4, The discriminating cub:c is the discriminant of the
\q‘hadra’clc equation
(ax® -+ by*+cz 2+2fyz+2gzx+2hxy) A (% +y 4+ %) =o0.

This equation represents a system of conics at infinity passing
through the points of intersection H, H', K, K’ of the conic at
infinity and the circle at infinity, The discriminant expresses that
the conic brezks up inta two straight lines. Corresponding to
the three roots of the discriminating cubic we have the three
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pairs of lines HE', KK'; HK, H'K'; HK', H'K. If these pairs
of lines intersect in 4, B, C, :
ABC is a self-polar triangle
with regard to both conics: and
if O is the centre of the quadric
(the pole of the plane at infinity),
0A4BCisaself-polar tetrahedron
with regard to the quadric, Also
the lines 04, OB, OC are
mutually orthogonal and are
therefore the principal axes.
Referred to this tetrahedron the
equation of the quadric will be s\
of the form ' _ Fig, 35"
ax®+&y*+ezx? - dut=o, ’

 §

88. Transformation of rectangularﬁ’ﬁhr'dihates;

The equation of a quadric is simplified when the axce are
suitably chosen. The 'transforma,tjori' to new axes can best be
made in two stages, first keeping'the directions of the axes fixed
and changing the origin, an.;iithg:n keeping the origin fixed and
rotating the axes, N

&

8-81. Reduction qfﬂ}e general equation to axes through the
centre, L\

Let the coqndiflates of the centre be [X, Y, Z). The equations
of transforniatidn are then

7, ‘1 X
\V X=x -+
s’\\ .‘J":y"f' Y]’ .
RO 2=v+7)

SJThen. F(x, y, MN=FE'+X,y+7, 2’4+ 27
— l r Fi 7 aF aF aF
=, 3 Rt Ty "5
fey z)*'("" Xty syt az)
| +F(X, Y, 2).
the coefficients of the terms of the second
£ a, b f & 7t are invariants,

By this transformation
degree are unaltered, j
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The coordinates of the centre satisfy the equations

) _ dx

F GF P .

2y =% 5O hence the cosfhcients of &', 4/, 2’ all vanish,
The remaining term can be simplified. Usmg homogeneous

coordinates [, y, z, w], we have

F G

-_—0,

8F=2F1(X Y.z, W)

e F
XNzt +Z A WW/ a
I F
Hence f(X Y, D)=F(X, 7, Z, W)__QW’ '\‘\'
where W is put =71 after differentiating, O

"The last equation is the best form for calculating, but acgnmse
expression for the new constant ' can be obtained s, follows.

We Iﬁnp \
13F, X qVrZ bdmd N
2w Pt AN
gg—?iaX+kY+gZ-!;ﬁ;o,
%%-kX—;—bY%—fZJrg o,
I%i—ng—i—fYJcm%Lr*

Eliminating X, ¥, 4 ib&ween these four equatlons we obtain
| @ k\g p  i=o=A-Dd,
?z b f g
’0 f e v
§’ lp g v d-d

hence 2 A/D.
The teduced equation is thercfore
Q ) o, 9, &)+ A[D=0,

provided Do, If D=0 the centre is at infinity and this trans-
formation cannot be applied.

8:82. Rotation of axes. Invariants. _
Omitting the dashes we shall now write &, , 2 for coordinates

refcrred to the centre, and &', ¥', & for coordinates referred to
new rectangular axes whose direction-cosines referted to the old
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are {4, my, m], [, my, 1), [y, 1y, 1]. The scheme of trans-
formation is :

&y
i
b L 4
Y| my my oy
z | 1y g Fg

The equations of transformation being homogeneous, e\
constant term is unaltered, and f(x, y, ) is transformed no'a
homogeneous quadratic expression in &', V, 2. We ha\{.e\“ch“@n

ax®+ byt +c2®+ 2 fyr + 2gzn+ 2hay = a'x't b’yi%;k}c”z”

L F ot an? o & Bt
+2f vz +2g'% agiivzk xy. ‘
In the orthogonal transformation with origin ﬁxe@‘the EXPression
x*+3%+ 2%, which represents OP2, is transforned into
_ Xy 2,

ie. : X4y b =yl -1-9);;:*-‘3- 2’2,
Hence \ &

(a—-)t)x2+(b—)k)y2+(c,m,j%c’);é"’+2fyz+zgzx+zkmy
=@ =)+ (0 2N+ (¢ =N 2"
"< _J’_szyrg!_!_zg;zrxf+2}rlrx-'y!
for any value of A. ,I;f;he left-hand side of this identity brealss

up into factors, sb.also will the right-hand side for the same
value of A. Hefide the two equations

a—-}.’}{;\" £ =0 and
NG ’
&0
ﬂgﬁ.}kt be identical, i.e,
\»\;..; M —(2+b+0)A+ (44 B+C)A-D
EA“—(a’+b’+c’)?3+(A’+B’+C"))\-_D’.

In the orthogonal transformation we have therefore the three
absolute invariants

@d-A K g o
r }z! b!__A "ff i
P Sy

a+b+e=1,

_ A+B+C‘£],
and D.
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Also since the orthogonal transformation is a particular case
of the general projective trangformation, A is at least a relative
invariant. The modulus of the transformation is

L om my

.

ly my mn

Iy my my

The square of this is

‘Ezj? Shil, Shl, =1, since L —Slr=Th?=1,

| ¥Li, ELF ZLL while X[ l,=etc. =0. O\’

CELL 25233 Lt ' O
‘Hence A is an absolute invariant for the orthogonal &ran&
formation.’ R4 ‘O

The equation A I+ JA-D=o \

is the discriminating cubic; since its coefﬁcien’t\i'are all invarients
-the three roots Ay, Ay, Ay are all 1nvar1ants.\ 4

8-83. Reduction of the equation to the prmmpal axes.
Let the canonical equation of the quadrlc be
‘&' b'y ”—l—c z’ﬁ—i-A/D o.
We have the three 1nvar1ants )
"’\ a+b+=1
\}"c +ea’ +a'b =],
) .1 - ora'bd=D.
Hence o, ¥, "“a\re the roots of the discriminating cubie, and the
reduced egiﬂnon is
Q R s 2+ AjD=o.
3*34 Reduction of the paraboloid,

X),I“n the casc of the paraboloid the centre is a point at infinity.
o, and one root of the discriminating cubic is zero. The
direction [/, m, n] of the Lorrespondmg axis, the axis of the
paraboloid, is determined by any two of the equations

al+hm+gn=o,
Bl 4 bm -+ frn =0,
gltfm +en=o.
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The axis itseif cuts the surface in one finite point, the vertex A4,
-such that the tangent-plane at 4 is perpendicular to the axis,
Its coordinates [X, ¥, Z] may be found from the equations

oF ;0 OF +  OFy

. =.._{ e
ax/ *=ov/™=5z/™
F(X,Y,Z)=o.
Let the reduced equation be o

ax4Dy 2 for'y =0, A
ne
Then a+b=1 a'b=], —a'brt=A. e
Hence o, ' are the two finite roots of the discriminatipy cubic,
and the reduced equation is D
. o [ "‘\ ’
A2 a9+ 24/( — /A A) 2l =20

8-85. Elliptic and hyperbolic cylinder;\\:
- In the case of an elliptic or hyperbg\i\é cylinder, A=¢ and
D=0, The three planes F,=o, Fy-—— 0, F,=0 have a line in
commeon, the axis or line of centres” Transformed to any point
[X, ¥, Z] on this line as origip};%he equation reduces, as in 8-81,
to the form f(x’j,s %) +d =0,
where d'=F(X{¥X, D=pX+qY++Z+d,
Then using a]ong\\ﬁ\ih’this any two of the equations
O aX+hY4gZ 4 p=o,
P\ hX4bY +fZ +q=o,
:~\“;.\ EXHfY 4 cZ v =0
and \d}tﬁinating X, Y, Z (asis possible since )=o), we find
B d'=4|A=.. <FF= .., '
Q;wher_e Ay .oand 4, .. are the cofactors of a, .., in the de-
-terminants A and D respectively.
The dlsc.riminating cubic has one root zero, and if Ay, A, are
the two finite roots the equation reduces finally to the form
At Ayt g,
I &=0 the surface degenerates to two In

_ tersecting planes,
and F(x, y, 2} can be resolved into factors,
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8-84. Parabolic cylinder.

In the case of a parabolic cylinder the three planes F,=o,
F,=0, F,==0 have a line at infinity in common. The matrix [D)
is of rank 1, and f{x%, p, ) is a perfect square

=(xVa+be+ch)2. ’
The equation is then of the form Y2=4%X, where X=o0 and

Y=o represent planes, but these two planes are probably not
at -mht angles. Introducing an unknown coefficient A we may,

write the cquation A

(Zxy/at NP+ 22 (p—dy/@)a+(d- )=, R O

and thea determine A by the condition for orthogonality

\\
Z(p-Avay+/a=o,
s0 that ' A=2pv/afZa. Y

Then i1 we write Ex\/a+.\=y’\/2a“ \
and  X{p—Av/a)x+3{d- ?t*)-ﬁ—x \/{S(g\/c —r4/b)*/Za}
the equation reduces to the form

e 4kx ,

where k=1 {Z{ch—er)zf(Za)s}*

If the value of X n\ékes the coefficients of &, ¥, # in the ex-
pression for & all ‘anish, the surface reduces to two parallel
planes; and if k; o it reduces to two coincident planes.

29 %&dmcs of revolution.
J0

In a@nrface of revolution every plane perpendicular to the
axis Cllté; the surface in a circle whose centre is on the axis. Let 4
(Rig)46) represent the pointatinfinity on the axis 04, and UV the

u’lar of 4 with respect to the circle at infinity. Then every plane
section through UV is a circle, and its centre, which lies on OA4,
is the pele of UV with respect to the curve of section. Hence the
planes OAT and OAV are tangent-plancs to the quadric at U
and V. The condition for a quadric of revolution is therefore that its
conic at infinity should have . double contact with the cirele at
infinity.

Q.
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'The conic at infinity is :
f(x p, R)=ax+ by*+ c2®+ 2 fyz+ 2gzn + 2hxy =0,
and the circle at infinity is
P ¥E+at=o,
If these have double contact, then, for some value of ),
J, 3, )+ A+ y2 4 2% =0
represents two coincident lines. The conditions for this are thit®
the matrix

a+A A g \t‘t\
\
4

h b+ f "\:.
g f c+A | :

O\ i Fig. 16
should, for some va]ue_ of A, be of rank 1. This gives the following
equationg i a:
o S/

ARG (e =) =0, fA~(gh—afy=o,

Mv\ A (e +a)A+ (ca—g¥) =0, EA—(hf — by =o,
\"\, At (@ +B)A+ (ab— k) =0, PA—(fg —ch)=o,
V' The case where A=0 should be rejected for this makes

f(x! Y, z) =0

Tepresent two coincident straight lines and the quadrié is a
parabolic cylinder, If /> & % do not vanish we get the conditions

f_g_#

F G o
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If f=o then erther g=o0 or A=o. If f=0=g while s 0 we find
A=—¢, and then A2=(a—c)(b—c). If f=g=h=o, then two of
a, b, ¢ must be equal,

The condition for a sphere is that f(x, 3, %) should coincide
with the circle at infinity, and this is expressed analytically by
the condition that the matrix should, for some value of A, be of
rank o, which leads at once to f=g=h=0, a=b=c.

In the case of a surface of revolution two roots of the dis-
criminating cubic arc equal. The converse, however, is not true
unless it is understood that the quadric is real, for two conditiong ),

“are required in order that a quadric should be a surfaceg~of *
revolution, viz. that the conic at infinity should have deuble
contact with the circle at infinity. The condition for equal
roots mercly requu’es single contact; smgle contaC&\uth the
virtual circle is, howover, impossible in the ¢age of a real
CONIC, o\

Similarly, in the case of a sphere the rootc{of the cubic are all
equal. But this implies only two conditions, whereas five are
required for a sphcre The equality, ofthe three roots merely
implies three-point contact, but far@sphere the conic at infinity
must coinecide with the circle at 1f1ﬁn1t}

The condition for equal xoots, or the discriminant, of the

cubic ses })‘24_]{\ Deo
s PPy D4 Js 2D 81 Do,
and the conditions for three equal roots are

P

e . I ] 3D

Now I*i\\j,j (Ta)*—3(Zhe—Zf?)=(Ta®—Thc) + 3Zf2
But, E‘aa Zbe is a positive definite form, Hence if 2—3 =0,

nd ‘the coefficients are real, we must have f=o, g=o, k=0
and o=342— Tbe={a— L (b+ )2+ £ (b—¢)?, therefore a=b=c.

8-95. EXAMPLES.
. Find the pole of the plane 2x —8y—32=2 with regard to
the surface X% =292 4 22— ayz+ 6% — 42+ 5=0. :
Am [—' I, 3; 2]-

BAG ’ Iz
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2. Reduce to their principal axes:
(1) #*+y2 2P —gyx—4rx - 4ay=3.
(i) y2+z2+yz+zx—xy—2a_c+2yﬂzz+I=o.
(i) 427+ y"+37+ 298+ 430+ 42y — 245+ 32 =0,
(iv) #243y* 4322 —2yz —20—2y+ 63+ 3=0.
(v) 22 —2yst2zx—2xy—x—2y+32—2=0.
(vi} 207 —79%+ 222 —10y7 —8ax — YoMy + 6 + 12y ~ 63 - 5 = Q>
(vii) 2y + 420+ 28— 4y+02+5=0.. ke
(viit) gx®+ 432+ 422+ 8y= 4 Izzx+12xy+4x+y+lo~»\}=
(ix) #%+2p*+ 27— 4y2—bzx—2x+ By — 22+ 9 =04 }‘;
(x) #*+ 3%+ 22+ gaw + 25+ 12y — 254 g =0, \\
(xi) 22-+4y%+ 9%~ 12924 bzx — 4xy+4x 8y+ 122+ 4=0.
(x1i) 2x24 5y? +zz2—zy.<,+4zx 2ry+14~x—16y+ 14z +z2h=0,
(xiii) 16x2+gy? 4 42 +7x+2y—126 £ ﬁyz—l(v axX -+ 24Xy =
(xiv) a%4452 +927— 122+ 63 ~ 4.763!—1-‘6x+4y+102 23 =0,
(xv) 20%+ 22— 422—2y"—2.,x-'-5“cy—2x zy+z=0.
(xvi} 16x2+4y2¢4.z2¢4y“ Sz‘x+8xy 4x+ 4y —10z7—22=0.
Ans. (i) X2+ V22240
(i1) X’+2Y‘+‘3} =4, centre [1, —1, 1]..
(iti) Parabohc éhnder V3Yi=4X or
2)Gxty a4 =8(x—y~z—2).
1v) X,{+2W+4ZZ=I cenire [1, o, —1]
(QH‘yperbohc cylinder. 3X2— ¥2=y,
(\}) Cone. X2+2¥2—4Z2=o0, vertex [2, —5 4]
- "\ (vu) Cone. X*+ ¥*—Z2=0, vertex [—
\“ (vili) Parabolic cylinder. 17¥2=%X or
' (3x-+2y 22+ 1) =25+3y 62,
(ix) Cone. 4:80X%+ 1682248720, vertex [1, —2, o].
- (x) 3X*+3Y2-Z%=1, centre [1, -2, —1].
{xi) Two coincident planes. (x—2y+35+2)2=
(xii) Elliptic cylinder. X242¥2o1,

1 N
(o

1

2:13 ¥l
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(xin} Parabolic eylinder. 29¥2=9X or
(4% 3y —28+ 1)P=x-+4y+82+ 1.
{xiv} Parabolic cylinder. v ¥2=2+/6X or
(3= 29435+ )i+ 4{n+ 29+2—6) =0
{xv) Hyperbolic paraboloid. 3(X%— Y8 =27, vertex
[e, o, ©]. '
{xvi} Elliptic paraboloid. 3X?+ ¥?=2Z7, vertex [~1,2,—1].
3. Bhew that the equation .
2x% ~ y? — 222 + 205+ 102X — 4Ky - 20 — 20y+ 148+ 14=0 (M \.
represents a cene of revolution; find the coordinates of the
vertex, the vertical semi-angle, a.nd the direction of thed@xls.
Ans. {—71, 2, 1], tan13, [r:2:—3]. m'\'\"
4. Trove that the equation/x++/ v +Vz— o represents acir-
culdr cone whose axis isxy=1y= zand vertical serx{rsangle cot=14/2,
5. Find the conditions that F (x, y, )—'o>sﬁould represent a
paraboloid of revolution. QO
Ans, agh+f (£2+k3)’%0»'
bhf +g (2 1% =0,
ofe +h(fi%g) =
6. Find the conditions ‘d&at Flx, v, z) o should represent a
circular cylinder, \i
Ans. agh -+ f(g? ~rk2) o, etc., and p/f+g/g+r/h=0.
7. Show that the equation
@'ﬁs—l—gz.x-{—hay +paw+gyw +raw=0
repfeqent‘a\&quadnc passing through the vertices of the tetra-
hedron, of reference and find the conditions that the lines of
mtem&étmn of the tangent-planes at the vertices with the op-
p\s.lte Taces should lie in one plane.
Ans. fp=gq=rr.
8. Show that
KPP 2R g ey Y — W0 — YT Fw=0
Tepresents a quadric inscribed in the tetrahedron of reference,
and that the lines joining each vertex to the point of contact with

the opposite face are concurrent,
I2-2
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9. Show that by suitable choice of unit-point the equation of a
quadric which touches the six edges of the tetrahedron of re-
ference can be written

Xy bt b w? k ayx + 2x% £ 20y + 20000 + 290 + 2310 =0,
If the signs are all +, the quadric degenerates to two coincident
planes; if the signs are all —, it is a proper quadric (not a conc);
and these cases each give rise to seven others by changing the
sign of one or more of the coordinates; in the remaining ‘L'orty-\
eight cases the quadric is a cone. . O\

ro. If a quadric which is not a cone touches the eflges of a
skew quadrilateral show that the four points off‘eantact are

coplanar, ¢

11. If a quadric which is not a cone touchésthe six ed ges of
a tetrahedron show that the lines joining «the" pairs of points of

contact of opposite edges are concurregtl,

£2. Three mutually perpendicular bnes through a point O of
-a given quadric cut the surface i\, 0, R. Show that the plane
PQR cuts the normal at O ingfixed point (Frégier point),

13. Three lines througlia fixed point O of a given quadric,
parallel to three conjugdte diameters of another quadrie, cut the
first quadric in P, (9> R. Show that the plane POR passes
through a fixed point. '

14. Find thedbcus of the Frégier points when O is varied.

Ans. A \:Qo\_ncentric quadric. If the given quadric is

A\ ax®+by - c2t=1
thg&u“ation of the locus is

T,

AN . (a+b+c)22{ax2/(-_a.|_b+c)2}=L

N
%
\ }

15. If the quadrics U7 and ¥ hoth have ring-contact with the -

quafinc S, show that U and ¥ intersect one another in two
comics. :

. 16, Sh'ow that any two tangent-cones of the same quacll”ic
Intersect in two conics,

17. Show that two quadrics which have the same tangent-
cone mntersect in two conics. '



CHAPTER IX

GENERATING LINES AND
PARAMETRIC REPRESENTATION

%1. We have seen that in determining the intersection of a )
line with a quadric we obtain an equation of the second degree, * &
This equation cither has two definite roots or becomes an identity™\,
Hence if three points of the line lie on the quadric, alf its peits *
must lic on the quadric. This implies three conditions, \Biit a
line in space has four degrees of freedom, hence there isfstiﬂ one
degree of freedom, and thus an infiity of lines{lf¢ on the
quadric. \%

If we appiy the same reasoning to the casgofa cubic surface
we see that a line cither cuts the surface in'three points or lies
entirely on the surface, I¥, then, four ppjrfts of the linelic on the
surface it Jies entirely on the surface. But this implies four con-
ditions, and hence a finite number-of lines are determined as .
Iying on a cubic surface. It “{illjb:é proved in Chap, xviI that
this number is 27, though theyrate not necessarily all real,

Similarly, in general, o\lmes at all lie on a surface of the
fourth or higher order,, i&course there may be cubic surfaces
which contain an infih] y of lines (ruled cubics), and quartic
surfaces which confain 2 finite number, or even an infinity of
lines, etc., but thése are special cases,

9-11. W@,@l}é seen also that through any point on a quadric
there PaSSQth generating lines, real, coincident, or imagina.ry.
Lot A be any point on the surface, a and a’ the two generating
Iine,&(b{()u gh 4. These form the intersection of the quadric with
H’éitangenbplane at 4. If B is another point on the surface it
do€s not lie in this plane. Let & and & be the two generators
through B. b moets the plane {aa’) in a point Iying on the surface
and therefore Iying on either a or &', say @', i.e. b cuts 4" and
cannot cut q. Similarly 5 cuts 4, but not a’. If C is a third
point on the surface, and ¢, ¢ the generators through €, one of
them, ¢ say, cuts ¢ in a point P, The generators through P are
“and ¢, of which a cuts b and therefore ¢’ cuts b. Hence all the
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generators @, @'; b, &'; ¢, ¢’ form two distinct systems. Every
generator of the ome system, e.g. @, cuts all the generators
b, ¢, ... of the other system, but no two generators of the zame
system intersect. '

8-2. The equation of a hyperbolic paraboloid was obtained in
the form yz=cx, or homogeneously yz=cxw. The equation of
a hyperboloid of one sheet can be written in the form '

Q"
afa?— 2t =1 yB, A
ie. (xfa—5/6) (xfa+ 3(c)= (1~ 3/B) (1 + /Bl -
Both of these equations are of the form (~.}"\'
' afi =43, m’\: 7

where &, B, y, § represent planes. This is'théform of the equiation
of a quadric when two pairs of generators.are taken as four of the
edges of the tetrahedron of referencdl, Take A=[1, o, o, o] and

" B=[o, 1, 0, 0] two points of the\surface, and let a, « be the

generators through 4, and 5,%" those through B, Let @ cut ¥’
in C=[o, 0, 1,0} and &’ cut¥in D=0, 0, 0, 1]. Then x==0 cuts
the sutface in ¢ and &’ whete also 2w =0. Hence the equation of

*

the surface is of the forth xy = kaw.

9-21. Equgtioi:s\ of the generating lines of the gquadriec

xp=zw. KN

Let P=lal; o/, 2/, '] be any point on the surface, so that
¥y’ =& and let { and 7 be the two generators through P.
Thg\n;}ince [ cuts " and & it is the intersection of the planes

&y and (Pb"), i.e. y2' =2 and aw’ = x'v0.

W\ Write ' =A%, then @' =x". The equations of / are then
o '

)

y=2Az, Ax=gw,

| Similarly the equations of ¥ are

' y=Nw, XNx=g,
where ¥' =X'g’,
Conversely, these two pairs of equations represent, for varying
values of the parameters A and X, two systems of straight lines
lying on the surface.

From this we can deduce independently that every generator
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of the one systermn meets every generator of the other system, but -

no generator of the same system. For the equation
(y=2A2)+k(x—w)=o

represents a plane containing the generator A of the first system ;
and the equation '
(y=Ne)+ & NVa—3z)=0

represents a plane containing the generator X of the second

system. Dut if 2=’ and & =) these two planes coincide,dive/)
e ]

the plane Ma+y—Adg—Nw=o0 4 N
. ' N
contains the generators A and X, K7,

But wking two generators of the same systemei¥e have four

equations y;M, )\x_—_w’ V= puz, ;m:\w‘

which have no solution in commen. \‘ >

9-22. The hyperbolic paraboloid. MV
Taking the equation of the hyp@;fiolic paraboloid in the form
yz‘-v,s':i?'%ﬂ; _
where # = o is the plane at inﬁiﬁ%y, the two systems of generators
are er} v
e cwl’ oy = cw} ’

But for all values‘oF A the equation Az=cw represents patallel
planes, hence ai{%he generators of the one system are parallel to
the plane z£8," Similarly all the generators of the other system

S

N\ 7,
are parallelto the plane y=o. This is clear also from the figure
i 6330
3% ' K _
Lbesurface, in fact, cuts the plane at infinity in the two lines
P20, w=0 and ¥=0, w=0, and all the gencrators cut one or
\ther of these two lines at infinity.

9-38. The two equations y=Az, Ay=1w represent two pro-
jectively related sheafs of planes. Thus a rcgulus is generated by
the intersection of two projective pencils of planes. Denote the
two lines x=o=1 and y=o=x by a' and & respectively, the
planes Ax=g, ¥=Ar by « and B, and let / be the line of inter-
section of % and 8. Then thereisa (1, 1) correspondence between
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the planes « and 8. Now «=(a"l) and B=(b"l). o’ and &' there-
fore cat /, say in P and Q. We have then on a” and &' the points
Pand Q in (1, 1) correspondence, and (PQ)=1 The regulus is
therefore generated also by the lines joining points on two pro-
jective ranges. It follows that if @’ and & arc cut by four gene-
rators in Py, P,, Py, Pyand O, Q,, O, O, these tvwo ranges have
equal cross-ratios. Also since (fa'} is the tangent-plane at P, the
tangent-planes at the four potats P form a pencil of planes with
the same cross-ratio as that of the tangent-plancs at the fair

peints (). O
931, A quadric swrface is genevated by a straigikine which
meels three given shew Ilines. ‘O

%

Let 4, b, ¢ be three given lines, all mutuall}?%ex\'. Take any
plane « through a and let it cut ¢ in R, theiya plare 5=(Rb}is
determined which cuts « in a line I As//djes in = it cuts 4, and
as it lies also in B it cuts b, als@¥i® cuts ¢ in K. Hence !
cuts @, b and ¢. But! is the intergebtion of the plancs o and 8

~ which are in (1, 1) correspondenite, hence by g3 / generates

e

a regulus. . <N

Without assuming thi® we may show that the surface
generated by /is of the@econd order. Let p be any line. R being
a variable point ono\.i:,,hle planes (Ra) and (Rb) cat p in points
P and Q which are'in (1, 1) correspondence. 1f I and V are
the self—corrpspuhding points in this homography, the plancs
(Ua) and (EF) cut ¢ in the same point, therefore the line-of
intersqc{i{}rf of (Ua) and (UB) cuts @, b and ¢ and 1s therefore 2
generater of the surface. U therefore lics on the surface, and .
simildrly also V. Hence U and ¥ are the two points in which 2

- o~cuts the surface,

¥311. Equation of the surface generated bv the transversals of
three given lines, )

Let I, m, n be the three given lines. Take any two points 4, B

o I. The planes (4#n) and (Bn) cut the line m in points € and D.
AC and BD then cut # in points £ and F. Take ABCD as tetr-
‘hedron of reference, Let E=[1,0,p, 0] and #=[o, g, 0, 1]- Let
L=]1,2, 0, 0] be any point on 7. The planes (Lm) and (Ln) inte™
sect m 2 line which cuts m in M=Jo, o, 1, p), say, and # 10
N={x, g p v1=[1, ), u, pu]. Then gu=A, p =1, »= ut, therefore
v=pp, A= pgu.
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Let PE.F:\:, ¥, %, w] be any point on LM. Then P=[1, A, ¢, pt].

Hence pr=1,

py=4 =pg,
pr=1,

_ pw =it
Eliminating p, p and ¢ we have

PEya = papt = pgpw . px,

therefore VE=pgrw, R ¢ :\

9-32. Guadric surface with two given generators of dlﬂ'ercnt
systems. N

A surface passing through the line =0=0is représented by
o+ Bv=o0, where w, B are expressions of the figs{ Jegree. But
this passes also through a=0=0, If this secend generator is
given, the surface is still not determined afidhits equation may
be more generally (Ax+ )u+(pa¢+ﬁ)'ﬁTQ\ Hence the general

equation of a quadric with generators g*o=v and #'=o0=21"1s
att’ + bov' +cua‘+duw 0.

The quadric has been made to! Satlsf_\, six conditions and there
arc still three disposable constants, the ratios of a, b, ¢, d.

Ex. - 8how that the equasipn of a hyperboloid of one sheet referred

16 a sct of axes throu gh\ﬁﬁe cenitre parallel to three generating lines is
O\ frzdgexthay=1.

9-4. The cohdition that a variable line should cut a given
line imposgglbﬁe degree of restraint, The assemblage of all lines
which d}{o’ne fixed line is, as we have seen (8-432), a special
linear, euiples. The assemblage of all lines which cut two fixed
11116‘& I8 a linear congruence. That of all lines which cut three
fixed lines is a vegulus. If a linc is to cut four given lines @, b, ¢, d

\ﬁ is deprived of all freedom, and only & finite number of lines
exist satisfying these conditions. The number of lines can be
determined by taking the special case in which the given lines
intersect in pairs. Suppose g, b intersect in A and determine a
plane «, while ¢, d intersect in B and determine a plane £. Then
if the line  meets both a and b, either it passes through 4 or lics
in the plane o similarly if it meets both ¢ and d, cither it passes
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through B or lies in the plane 8. If 4 lies in the plane 8, or B
in the plane «, there is an infinity of lines cutiing the four,
Excluding this case, if the line 7 meets all four lives it either
passes through 4 and B or lies in the two planes o axnd 3. Hence
there are in general two lines which meet Jour given lines in space.
We may determine these lines in the general case as follows. The
three lines @, b, ¢ determine a quadrie, which is cut by d in two
points P and Q. Through each of these there Passcs a generator
of the other system, which therefore cuts a, b, c and alsgad.
The two common transversals may be real, coincid{;n\af,\n\l‘
Imaginary, W W

This may be shown also by using Pliicker coordifites. Let
{8) (9), (), (5) be four straight lines, and (1) a line 11\:cét1'ng them,
We have then four equations of the form Q

_ ol tpuly ... = Opa/
linear and homogeneous in (5}, and also-the equation
. bl + foa Loy + lgfa® 0.
These five equations determine o sets of values of the ratios

of the six /s, N

™
¢

9-41. A problem which ig"important in non-euclidean geometry is
to determine the common.teansversals of two pairs of lines which are
polars ‘with regard _m\;\:«g“ii’en quadric. When this quadric is the
‘absolute” the comm, transversals are the common perpendiculars

N

of the lines. ¢

Let the equation of the given quadric be
"\\ ax® + 0y 42?4 dy? = o,

and ]_et’Q‘ie pair of lines be x =0 =g and y=o0=45. Let the other pair

be given by their Pliicker coordinates p, p'; let the first be the join

. Qf\?}}e'poi.nts. %, 31, 2, %] and [+2, 32, %, 25]. Then the second is
ml{he Intersection of the lineg

W +by y 4oz 7 deww=o,

axX,x + texyr + dwger =o,
Hence bysy 2 2

Do’ = bepy,, Doy’ =adp,,
Lo’ = Capy, Py =bdp,,,
P’ =abp,,, P’ =cdpy.

Q!
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If {4} 15 the comunon transversal we have

=0, gu=0,

PadaztPrefontPedn T Pwfiz=0 (1)
and bdpog oy -+ CPonGos + €Dy oy + aPysgp=0.  .ien. (2)
Also Toaa1 T Guyd12=0. vee{3)

Express g, and gy from (1) and (2} in terms of g and gg and sub-
stitute in {3) and we obtain

(4Py1 P10~ @Paa o) (Bgm® — qos”) L\
+{a (bp1,® — cpar®) +d (09® — Pus™ G20 Ty
a quadratic in gylge. The condition for real roots is (‘:f;

{2 (Bp) " — epy®) + & (bPod® — cpou™)}* + 4be (apy pra— E{Rézi’}ﬁa)z >o.

This is equivalent also to

{& (“f;"izz — APyt + ¢ (apy® —dpey”) ) + 4ad @g, 1:2 ~ g ) > F’:

and to )

{6 (PP +epy®) +d (bpo® + cpog} — 4abed Po® P2 > 0.
The rocts are real if abed <o or.jfbe>o or ad>o. Hence the two
common transversals are alwagsireal if the quadric has imaginary
generators. If the quadrigahas real gencrators and the signs of
a, b, e, dare + —— + thg{i‘ansversals are again real; in _thls case the
two lines # =0 =12 and/hz0 =25 cut the quadric in imaginary pomts.
If, however, the signs\;}e either + + — —~ or + ~+ —, 80 that t_hese
two lines cut the q@adric in real points, a further condition 1s required,
"The conditiphthat the line joining {x,) and (x,) should cut the
quadric in ;e,:{'l"points is that the roots of
\thﬁifx12+ )2 (amyxg+ ) A (et L) =0
shou,l;d: be real. This gives
o\:\ ) (awyxy+ ... 2 —(ax2+...) (@x? +...)>0,
\J%.
Now the condition for real transversals is .
[P —(adpy® +bepy?)y — 4abed PPy’ > 0,

Le.  Prea(adpy?+bepe?) P+ (adpo®—bopu'f >0

Hence if ad and ke are both negative the roots are real if P>o.

P=abp,? +acpy® +adpt+ b pygt + bdpy® + cdpy® <o,
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9-51. .Freedom-equations of the hyperboloid of one sheet,
Writing the canonical equation in the form

B e L (1)
each side factorises, '
Write
xfa+yfb=2 (w—2z/c) and xlatyfb=p (w+z/c) [ N
then : oo [ 298

¥/a —y/b:)t‘l(w-i—z/c) and x/a —y;’b———p*l(w—z,.-’cjj .\:\'

. . 4 '_\' L .
These four equations are equivalent to three, and we, kgl solve
any three of them for the ratios of v, B, w. Wg gbtain then

7

pxla=Au+1° AN “
pefe = )l—-,u.J \\
pw = }l—l-Ju‘..:\ Nt

These are frcedom-equations in térrﬁs of the two parameters

Aand p, and the two systems of-generators of the surface are
represented by A=const, and W= const,

952, Similarly the paraBéfoid

i,,q‘%/az —y%sz - 22%./{:
is represented by the ‘f}eedommquations

L >

pxjfa=A+H]
N2
.’\Z“; pyll.‘rbz}l—-p
\. szac =1 J .
’\o\ Nos/ . Pw =2)(P;

()96, Parametric ¢quations of a curve.

\J Tfthe homogeneous coordinates x, v, 2, w are expressed as:
functions of 5 single parameter ) they have just onc degree of
freedom and fepresent points on a curve, If the equations are
algebraic the curve is called ap algebraic curve, and if, further,

algebrate curve, To every
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present (see 14:13) that, conversely, to every point, with certain
possible exceptions, corresponds one value of the parameter, so
that between the points of the curve and the values of the
parameter there is an algebraic (1,1) correspondence. The
exceptional points are double-points on the curve.

The intersections of the curve with an arbitrary plane are
found by bubsntutmg the coordinates in terms of A, If 7 is the
ighest degree in A of the four parametric equations, this will
cad to an equation of degree 7 in A, Ience the curve is cut by,

an arbitrary plane in 7 points, and is said to be of order v. L \

N
11
1
i

9-61. "L'hus for example the general freedom-«equatlons of\the

szcond degree N
pr=a, 424X+ q,, ctc., \\

represent a conic. Eliminating p, A2, A linearly hétiween the four
equations we obtain N

X & 4 Gy I=Q\

by by by (NN
2 ¢ o @'
| @ d ‘{1::%52 i

which represents the plane of\the conic. Again, eliminating p
and A between the first thtee equations we get a homogeneous
equation of the second degree in x, y, = which represents a cone
with vertex [o, o, 0, 1]\\If w=0is the plane at infinity the conic
will be a hy perbola; .parabola, or ellipse according as d,* — d,d, >,
=,0r <0, A\

(N .

9-62. Agmn, freedom-equations of the third degree represent
a cuhi(:\éh:ve, which, however, does not in general lie in one
plane i

O X =A%+ a X+ @A+ ag, etc.
}shmlmtm g A® between the first equation and each of the others
in turn we get three equations

p(box— ayy) = (b — @pby) A+ (byay— g By) A
+(bya,— ayb,), etc.,

and eliminating p and A between these three equations we obtain
a homogeneous equation of the second degree in (bx—a,v),
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etc., which represents a quadric cone with vertex [a;, &, ¢,, dy].
Similarly eliminating the constant term we get thres equations
pllyx—ayy)=(byay,— aybo) A3+ (byay — a, b)) A
+(byay— a0, 4, ete.

Eliminating p/A and A we obtain a homogeneous equation of the
second degree in (b3x—ayy), etc., which represents a quadric
cone with vertex [az, b;, €5, d;). Fach of thesc cones passes
through the vertex of the other as we see by putting A=o in thé\
freedom-equations of the former and letting A — oo 1n those,_of
the latter. Hence these two cones have a common genditing
line and their remaining intersection is a cubic curves >

9-63. Conversely anly conic can be representefh\by’ rational
. . . [
freedom-equations ; for let / be any line not in/te plane of the
coni¢ and meeting it in a point O. 'I'hen any\plinc « through /
cuts the conic in one other point P, hencc;ithere isaf{i, 1) corre-
spondence between the points P and theplanes of the pencil with
axis /, and these can be uniquely reldted to a paramerer A,

Ex. Tind freedom-equations fafthe comic in which the plane
%fa~2y/b+w=0 cuts the ellipsoldha®/a? + 3282 + atict = wh.

By inspection one point on the conic is [3a, 45, 0, 5]. Take the line
4bu=3ay, =0 as axis ofua pencil of planes gxia — 3% —Azjc=o0.
We find that this planedcuts the conic besides in the point whose
coordinates are given fy)

Xla=7—)2,
Lo b=
\:\ : Ble=4a,
& w=g5-4 A2,

9~®} Further, any non-plane cubic is rational, for if we take
.t\.wg:i’ﬁjfed points on the curve a plane through thesc will cut the
curve 1n one other point. Hence there is 4 (1,1) correspondence
between the points of the curve and the plancs of the pencil.
A g:u'ane cubic curve, however, is not in general rational, butitis
rational if it possesscs g double-point, for any line through the
doubl‘?-p?int and lying in the plane of the cubic will cut the
curve in fust.one other point,

We shall teserve the further discussion of cubic curves in
space till a later chapter,
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§-7. Parametric equations of a surface,

If the coordinates of a point are functions of two parameters,
the point has two degrees of freedom and its locus is a surface,
1f the functions are algebraic and rational the surface is called a
rational algebraic surface. The order of a surface is equal to the
number of points in which it is met by an arbitrary line. Hence
if the parametric equations are of degree » the order of the sur-
face appears to be in general equal to #2, It may, however, be
fess than this (sec g-73). \
£ \

871, It is convenient to consider the parametric equations -
from another btandpomt If we consider the pdrameters.)i‘ ¢ as
cartesian cootdinates in a plane we have a representatrfm of the
surface on the plane of A, . 'To every pair of values@N, {4 corre-
sponds a unique set of values of the ratios x3gN"% : @, hence
to every point in the (A, p)-plane corresponds}umque]y a point
on the surface. The converse, however, is'oot so.obvious, and
to fix the ideas more clearly we shall cohfine our attention again
to the hyperboloid (see 9'51). The.“equations (3) express
(¥, ¥, 2, w) rationally in terms of @ 1), and two of the equations
(2) conversely express (A, p) rationally in terms of {x, ¥, %, w)
when. these coordinates sat&sfy ‘the equation of the surface (1}.
Thus in this case there i 1& Nan-atlonal relation between {4, ) and
the ratios of (x, y, sg ‘and therefore a (1, 1) correspondence
between the point$hof the quadric and the points of the plane.

To a plane chﬂon Ix+my +nz+pw=o of the quadrlc corre-
sponds a con.\ :

‘K 0+ 1)+ mb (A — 1)+ ac(A— p) + p(A+ p)=o.
ertmg },V instead of A, and p/v instead of u, i.e. replacing
A, #\By homogeneous coordinates A, g, v, 2ll the conics which

cortespond to plane sections of the quadric pass through the
points common to the four conics

AMitri=o0, Ap—pi=0, v(A—p}=0, v(A+p)=o0
More than two conics do not in general have any point in
common, but these four conics have in common the two points
L=[1, 0, 0], and M=o, 1, 0]. These two points are exceptional
points in the representation, since the corresponding values of
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x, ¥, %, w are all zero and therefore there is no unique point on
the quadric which corresponds to either of them. Since the
generators of the quadric are represented by cquations of the
form A=hv and p=ky, the two points /, and M are 1n fact the
paints through which pass the lines in the (Au)-plane which

‘represent generators of the quadric. The line ZM or v=0 15 also

exceptional, for to this corresponds the single point xfa=Ap,
yfb=Ap, z=0, w=o0, 1.e. the point O=a, b, 0, 0]. The tangente\
plane at this point is /e —3/b=o0. The gcnerators throughathis
point are the lines of intersection of this plane with tHetwo
planes z= T cw; to these planes correspond A=o and w0, and -
to the twe gencrators correspond the points [of Ty o] and
[1, 0, o} Thus the exceptional points L and M repretent the two
generating lines through a particular point OYP the quadric.
9-72. Stereographic projection. 07\

. This representation can be viewed¥e$ an actual projection of
the quadric npon a plane, the centréaf projection bein g a point
O on the surface. Let the generators through O cut the plane of
projection in L and M, thendevery plane section of the quadric
which does not pass through\Q is a conic which is projected into
a conic passing throqg@ L and M. The generating lines which
meet OL are projected into straight lines passing through L,
and those which meet OM into straight lines passing through M. -
The generators\OL and OM are represented only by the points
L and M, winthe point O corresponds the whole line LM, and a
plane ggf:ﬁﬁh through O is represented by a straight line to-
gethé\(with the tine LA, ) '

+Such a projection is called stereographic. The term is often

'{esf.ricted to the projection of a sphere in which the centre of
“projection is a point () on the sphere and the plane of projection

a is parallel to the tangent-plane at O. In this special case, since
the section by the tangent-plane at O is a point-circle, the
generating lines through O are two imaginary lines passing
tl.lrough the circular \points'I, J in this plane. I'hesc are also the
circular points in the parallel plane . Hence every planc section

of the sphere (not through 0) is represented by a conic passing
through 7 and S le. a circle,
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This representation of a quadric surface on a plane is not
confined to the case in which the generating lines are real.
By stereographic projection any quadric can be represented
rationally on a plane, all plane sections being represented by
conics passing through two fixed points which are real or
imaginary according 2s the quadric has or has not real generating:
. lines. Thus if the ellipsoid x*/a®+ y%/b%+ 2%/c*=w? is projected
from the point [0, 0, ¢] on to the plane z=o the point.
P=[x, v, 2, @] on the ellipsoid is represented by the point

=[x, '] on the plane =0, and we have L\

A L e P . QO

x? y & - ) (5, }

N 2\ L
Henee- ‘ (?+b_2)( _E) =w2_c_2’ e
] ‘2 o \
i.e (-7_(1_2 +y2 I) ( +J;2 \l A,
. i :‘2 P N\

“?rl'ting ’ P x j;g ..].. l:,
we have peje= x’zjag +y'2f52 —1,

and p(w— zie)=2, therefore .. )

pa«:?—"iw py=2y";

or putting \a\c‘ Aa, y'=ub,
we have ' ") px/a 2A,
) '\Q pyfb=2p,
\? prfe =24 pt—1,
\ prw=A*+ i+ 1,

373‘ Letus now return to the general parametric equations of
degree #, and consider the points in which the surface is cut by
an al’bltrarv line. If u=o=w are the equations of the line,
#+kv=o0 represents any plane through the line, When the
values of the coordinates arc substituted in terms of A, g, the
equation u+ kv = o represents 2 pencil of curves of order 7 in the
(Au)-plane, and this pencil has 2 base-points, the points of inter-
section of the curves which correspond to the plane sections

SAG _ 13
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u=0 and o=o0. Thus to the points of intersection of the line
u=0=g with the surface correspond in general 2 points in the
(Au)-plane, hence in general the surface is of order % TIf, how-
ever, all the curves corresponding to x=0, ¥y =0, ¥ =0, W=0 pass

through s fixed points, these points do not correspond to any

definite points on the surface, and the order of the surface is
then r*—s.

9731, Thus the general parametric equations of the second
degree in three homogeneous parameters represent a- quiigic
surface®. This is not the most general quartic «-urfaoe\ for'=
quartic surface is pot in general rational. If we tako 4 linear
homogeneous equation in the parameters, uh-&—bp,—i— cr=o0 and -
express » in terms of A and g, we obtain parcm\stnc equations

. of the second degroe in two homogeneocus pariticters, and these

represent a conic. Hence this quartic sugﬁ%ec contains a double
infinity of conics. \
If the four conies in the ()tpv)-pla:ne which correspond to

- #=o0, y=0, =0, w=0 have ong\point in common, the para-

metric equations represent a oﬁbio surface, also possessing an

mﬁmty of conics, and therefore also an infinity of straight lines, -

since a plane which cuts tho surface in a conic will have a straight
line for the remamdt:r Of its intersection. The surface is therefore

a ruled cubic, \\

Ex, 1. = '..:“ pr=A,
A¥ :
'\ . Y=g,
O™ pr=24Au,
o\ : pre=A2+pr+ .

o~ '\The equation of the surface is found, by eliminating p, A, g, to be

V

ye(~y)=x(x+y) (v +5—w)
.If(_;.:k?., we get pxX=1,
py=*k,
pr=(R+1)A,
po=R+ 1) A+1,

* This is Steiner’s Surface. See 17-93.
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parametric equations of the first degree in A, and therefore repre-
senting a straight line. This line is the intersection of the two planes

- yske ?
(1) 5=+ 1) (w—2)["
In fact x=o0=y is a double-line on the surface, since x=o0 cuts the

surface where 32z =0, and therefore every plane through this line
cuts the surface in this double line and one other line.

Ex. 2. Shouw that the tangential equation of the cubie surface in
Ex. 1is O\

@f® =L (n+aw)+({+w) (n+wf=0. N
If the four conics have fwo points in common the parametnc
.€quations represent a general quadric. >
If they have three points in common, say [1, o, o) E@ 1, 0] and
fo, o, 1], the parametric equations will all be of\the type

px=auv+bvA+ cAp, x\\

7l

and writing X', p’, »" for pv, #A, Ap, they become linear and there-
fore represent a plane. g™

The general cubic is a rational sﬁrface and can be represented
by parametric equations of the third degree, such that the four
cubic curves in the (Auv)-plane which correspond to x=o,
y=o,z=0, w=0 all pass\through six fixed points,

To prove this and aythe same time explain a method by which
the paramctric equgﬁ'bns can be found, let two lines @ and b be
chosen on the susface, mutually skew, and take any plane =, not
containing eitHerof the Lines. Let P’ be any point-in 7. Then
through P/ t&re passes one line which cuts both ¢ and 4, and
this lin \sms the surface in one other point P. Hence there is a
(1, 1} gdrrespondence between the points P of the surface and
thf: pomtb P’ of the plane. '

\ 99. EXAMPLES.

1. Show that the generators of the surface x?+y*—2%=1
which intersect on the plane of xy are at right angles.

2. Prove that the hyperboloid x2fa®+y%/b%—2*/c*=1 has
generators which intersect at right angles unless ¢ is greater
than both a and &,

13-2
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3. Show that the coordinates of any point on the surface
x?+y?=22+4w? can be expressed as

x=sin(x - f), y:cos(oc;,@), z=cos{c+ ), w=sin(z-+f). '
4. Show that the angle between the generating lines of the

quadric x%/a+yb+2%c=1 through the point [x', 3/, =] is
cos™H{A M)/ (A — A), where A, A, are the roots of the quadratic

P ¢
x*2 y*}. = 2

RS A Y ED Ry

KO

5. If AA', BB, CC" are three concurrent lines, not cop}ﬁna},.
prove that there is a quadric for which B(”, CAE;";{IB’ are
generators of the one system and B'C, C'4, 4'B ar:e ygenerators
of the other system. "'\

6. Prove that the normals to a quadric at albpoints of a gene-
rating line generate a hyperbolic parabcllqid.

7. Show that the four quadrics, eac}; 6f which contains three
of four given skew lines, have two.common generating lines.
8. If a parallelepiped lggﬂa: Sthree edges coinciding with
generating lines of the samé'system of the hyperboloid
_ a&fﬂq@-!—yﬁbz —a¥ct=1,
© show that the two }:Qﬁxﬁin'mg vertices lie on the hyperboloid
,,':x2/a2+y2/52—22,362+3=0.
9. If a\:éa\rall'elepiped has three edges coinciding with
generatingdines of the same system of the hyperboloid
O : w¥a? b — 22t =1,
sl{év’(f that it has three other edges coincidin g with generators of
\”\jché other system, '

10. Show thatall parallelepipeds which have six of their edges

coinciding with generators of the same hyperboloid have the
same volume,

11. A straight line moves so that four points marked upon it
move in four fixed planes; show that the straight line has one
degree of freedom and that every point on it describes a conic.
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12. Show that the lines joining the vertices of a tetrahedron
to the corresponding vertices of the polar tetrahedron with
respect to a given quadric all belong to the same regulus.

13. Show that the lines of intersection of corresponding plancs
of a tetrahedron and its polar with respect to a given quadric all
belong to the same regulus.

I14. Show that the four altitudes of a tetrahedron belong to
the same regulus of 2 hyperboloid of one sheet ; and that the fom’
perpendiculars to the faces at their orthocentres are generatoi‘s
of the other system. . M

15. Show that the centroid of a tetrahedron is;tfthé mid-
point of the join of the circumcentre and thecéntre of the
hyperboloid on the altitudes. What does this)théérem become
when the tctrahedron is orthocentric? 7\

16, If a quadric is circumscribed abiji} a tetrahedron show
that the four lines of intersection of thétangent-planes at a vertex
with the opposite face belong to ti¢same regulus.

17. If 2 quadric 1s insc;-ibe&i‘i’n a tetrahedron show that the
four lines joining a vertex to the point of contact of the opposite
face belong to the sam&begulus

18, Two generat}x} of the same system of a quadric being
given it is requu'ed to find a generator meeting them in points
at which the fafgent-planes are perpendicular. Show that the
problem ad@nfs of two solutions or of an infinite number, but

that in d\ejdtter case the quadmc is not of general type.
Q (Math, Trip. II, 1914.)

-~ I’B If the generators of the same system of a hyperboloid at
- \four points 4, B, C, D meet the opposite faces of the tetra-
hedron respectively in 4’, B, €', D', prove that a quadric exists
touching these faces at these points.  (Math. Trip. II, 1915.)

zo0. With the notation of 2-511, if (a), (5), (¢) are given points
and (x) a variable point on the plane, (abex)=o0, where (abex)
denotes the determinant whose TOWS are @y, @y, da, 35 Boy «--;
£y, vy Xy waen
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21. If (), (@), (B), (¥') are given points and (x) a variable
point, show that the coordinates of the point of intersection of
the plane aa’x with the line b’ are
bi(ad'xb’)—b/(ad'xb) (i=o, 1,2, 3}

22. Prove that the equation of the quadric wl:ich has as three
generators the lines joining the pairs of points (a), («); (8), #); -
(e) (¢') is N

: {aa'bx) (&' cc’x)=(aa'¥' x) (b oc'x). A
: O\

23. Given six points (a), (5), (<), (a), (8), (¢}, ﬁ)rmi@sﬁe\v
hexagon, show that the three quadrics U/, I/, \\-‘iﬂi“;;cnerators
(i) aa’, BY', ec', (it} ab’, bc', cd’, (ith) ac’, ba', b a&"}\(mﬁected by
2 linear relation AU+ uV+ vV =o0.

RS
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CHAPTER X
PLANE SECTIONS OF A QUADRIC

10-1. A quadric has the property that it is cut by any straight
line in two points, real, coincident, or imaginary. The surface
is therefore said to be of the second order, the order being equal
to the degree of the equation. . R

Congider the section by any plane o. Every line in « cutsghe’)
surface, and therefore the section, in two points. Hepc’é\thc
section is a curve of the second order, f.e. a conic.

The planc at infinity cuts the surface in a conic afAnfinity C.

Let the section ¢ cut this conic in H, K. Then"the section is
an cllipse, a parabola, or a hyperbola, according as H, K are
imaginary, coincident, or real and distincts )™

If the conic C is virtual, 77 and K areglways imaginary. Every
section 1s therefore either an ellipse © Virtual. The surface is
either a real cllipsoid, or a virtua) strface.

If Cis real, the surface is a hyperboloid. If Ois its centre, the
cone with vertex O and base €4s the asymptotic cone, Sections
by planes which touch thigepne are parabolas, sections by planes
through O cutting thg~Cene in real lines are hyperbolas, and
sections by planesthrough O cutting the cone in imaginary
Iines are rcal ellipses in the case of the hyperboloid of one
sheet, and virgdal ellipses in the case of the hyperbeloid of two
sheets, o\ .

If Cbfeaks up into two straight lines, their point of inter-
SECtiQn'is\ﬁ duuble-point on the curve of intersection, 1.e. every
lfl'{efljfing in the plane at infinity and passing through this point

mr‘r'lgkts the surface in two coincident points and is therefore a

NJangent, The plane at infinity is therefore a tangent-plane. The

surface is a paraboloid (hyperbolic or elliptic according as the
two lines at infinity are real or imaginary).

All parallel sections cut the plane at infinity in the same two
points, and have therefore their corresponding asymptotes
parallel. They are therefore similar conics, similarly placed, or
homothetic,
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10-2. The centre of a plane section.

The centre C of any section is the pole, with regard tothe curve
of intefsection, of the line at infinity in the plane. "I'his line at
infinity is therefore part of the polar of C' with regard 1o the sur-
face ; hence the given plane and the polar of ' both intersect the
plane at infinity in the same line, i.e. the polar-plane of C is
parallel to the given plane.

If the surface is a central one, let its equation be

ax?+ byi+eat=1, L\
and let the plane of section be . O
Ix+my+nz=p. N

If [X, Y, Z] is the centre of the scction, its p()lzly'\is"

' aXx+bYy+cla=1. \N%

These two planes cut the plane at inﬁnity:?ﬁ\t‘he lines
Lo+ my -+ nz =0y @<= 0,

and aXx+bYy+cZzZoyw=o.

In order that these may coincide$™
aX bY Z  ON p
1l m n higice = Bla+mi{b+n¥c’

"These equations determine X, ¥, Z._
1021, If the su%faé’é ’_is a paraboloid
RS ax®+ by*=2cz,
the polar of 3/ Y, Z] is
2 aXu+bYy=c(z+2),
anc’l\v@hz’we to identify the equations

&«

N _ lxtmy+nz=o,
"*;and - o aXx+bYy—cz=o.
aX _bY ¢ p-—nZ

Hence =t Gl
[ m n Ela+mifb’

10-31. Axes of a central plane section.
Let Cbethecentreof thesection, Equal diameters of the section
are equally inclined to cither of its axes. The magnitudes and

positions of the axes can be investigated by considering the 1ir§li’€‘
ing case of a pair of equal diameters when they come to coincide. .
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Consider first for simplicity a central section. The centre of
the section then coincides with the centre of the surface. The
extremitics of all semi-diameters of length r lie on a sphere with
centre C. 'T'he lines joining C to the points in which this sphere
cuts the surface form a cone. The generators of the cone are the
common diameters of the sphere and the surface. Since every
section through C has C for centre and cuts the sphere in a con-
centric circle, and since a conic and a concentric circle have just
two common diameters, every plane through C cuts the cone in

two generators and the cone is of the second order, RAY.
Let the equation of the surface be O
ax* + by +ext=1, O3
and the plane le+my+nz=o. R4

"T'ake the concentric sphere _
' Kyt t=rt N
The cone formed by the common diameters is then
(art — 1) a2+ (b — 1)y +{F—1)x?=0.
Now if the given plane touches th;a’ébne the two equal diameters
coincide with one of the axes of.the section. The condition for
a tangent-planc is N
Bi(art—1) :w:ig‘z/(brf’ —1)+n3(cr*—1)=0,
Le, \X‘l‘*(brﬂ ~1)(er*—1)=0,
which is 2 quadrgtic in #2, .
The two rpg{é'?f and r,? are the squares of the semi-axes of
the sectiong ™ S
To fin@tHeir direction-cosines A, g, v, find the equation of the
tangenity lane at [A, i, ¥] to the cone, Viz.
R\ (art — DAx+ (br2 — 1) py + (cr® — 1)rz=0,
\ms;n'& identify with the equation of the given plane. Then
Xrprv=If{art—1): mf(b*— 1) nj(er®—1).

10-32. Axes of non-central section.

In the general case when C is not the centre of the surfacé, an
arbitrary plane through C cuts the sphere in 2 circle with centre
C and the surface in a conic not having C for centre. These two
curves cut in four points, and their joins with € form four distinct
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generators of the cone. The cone is therefore of the fourth
arder. The section which has € for centre, however, cuts the
cone in two pairs of coincident generators, and we obtain the
axes of the section by choosing r so that these two lines coincide,
Let the equation of the surface be

' ' ax®+by* +ex=1,
“and that of the plane /
X+ my+nz=p. . A ¢

A

If [X, Y, Z] is the centre of the section, o\
: 2 VR 5
aX _bY _Z ? _aXP+dY —bfZ.

I m _.Ezlzja—f-mZ/-b-i-ﬁz/c X0

- ~N
Now transform to [X, ¥, Z] as origin. 'The\equation of the
quadric becomes

I~
ax’®+ by e+ 2 (aXx' +bYy -ﬁpz,’s'})
HaXAP Y2+ c 22— 1) =o,
ie, _ A
axF+ by 4 e b2 (It my %Y pJ(Bla+m2fb+ ule) — K=o,
where =1 ~p%[C22/&+m2/b+n2/c),
and the equation of thgp]ane becomes
(N oy s =0,

Hence the axeg'of the section are the same as those of the conic

20T byt
K7, Ixtmy+nz =o [
‘”\§~ ) . .
Her‘\eé»fhe quadratic equation for the squares of the semi-
axeg\is DB - K)(erP—K)=o,

o'~\g:1:r}d'the direction-cosines of the axes are -
Arprv=I(ar—K): mi(br*—K) : nf(er?— K).
10-33. 'The directions of the axes of a plane section may also

be investigated as follows. Let the equations of the surface and
the plane in homogeneous coordinates be

ax?+ by ot =,
bx+my+nz = pw,
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The points at infinity on the section are determined by the
equations
w=0
ax?+by*+ cxt=
Ix+my+nz =0
The second equation represents the cone joining the origin to
the conic at infinity on the surface, and the plane, which passes
through its vertex, cuts it in two straight lines, which are the
lines joining the origin to the points at infinity on the sectiom, -
Hence the asymptotes of the section are parallel to the two liles’

axt+byitezt= 01 N
Ix+my+nz =o _ “,\k:
Eliminating % and expressing the condition forteeal roots, we
find that the section is o \\ '
an cllipse l : N\ .

e =

“ *

a hyperbola J according as bgl%{j;:’ém2+abn2 <o.

a parabola

N
R NS
E X3

The axes are harmonic ccmjugii;;‘fv.;;siv with regard to the asymptotes, -
and are also at right angles, i.e. harmonic conjugates with regard to
the absolute lines in their ;Q‘ane, viz. the two lines '

¢ ‘\i’;]}xg +y2 +32:0}
XN lemy+az=o)
If therefore thgsa’gxé‘s: are the two lines
\‘\ 3 dal+byP = o}
we have'the two conditions (cf. 56)
7
\J E(bc!_,_brc)lg:o,
o T +e) =, -
hence  a'i B': ol =P {—(b—c) B+ (c—a) mP+{a—b) n}
cmt {(b—¢) P—(c —a) m*+(a— ) 7"}
s 02 {(b-c) P+(c—a) m*—(a~b) %}, _

Ex. Show that the section will be a rectangular hyperbola if

I (b+e) P=o. _ _
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10-4. Circular sections.

The most interesting of the plane sections of a quadric are the
circular sections. T'o show that circular sections actually exist
consider the conic at infinity C on the
quadric, and the circle at infinity Q.
These two conics, in the plane at
infinity, intersect in four points, which
are conjugate imaginary in pairs, H,
H' and K, K', and they determine
three pairs of common chords, HH' '
and KK’y HK and H'K’, HK' and -
H'K, of which the first pair are real

Any plane through one of these
chords, say HH’, has the two points Hand H' as the circular
points, and as the section of the surfdcg passes through these
points it is a circle. There are théfefore three pairs of sets of
parallel circular sections, one pairwéal, the others imaginary.

10-41. Consider the cenm;'aj'li'ciuadric
a.x”fqi'byz Fext=1,
The conic at infinity 46
' {w=0, ax®+by2 4 cxt=o,
and the equations
SN by H eat A (5242 2Y) =0, w=0
represerif*é"éonic through the four points H, ', K,K'. Choosing
A so&“a}’these equations may represent two straight lines we have
\ (A-a)(A-b)(r~c)=0.

:'Hé'nce A=a, b, or ¢. For each of these values the quadratic
) breaks up into factors and represents two planes through the

centre, the central planes of circular section. Thus for

A=a, (b—a)y*+(c—a)zt=0, ... (i)
A=b, (a-B)a?+(c—b)zt=0, ... (ii)
A=c, (a~)x*+(b—c)y?=0. ... (iii)

- Hence the central planes of circular section all pass through one

of the principal axes, and in pairs are equally inclined to a
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principal plane. If a<b<e¢ the planes corresponding to A=5
are the real planes, whether a, b, ¢ are positive or negative.

For the ellipsoid the real centrai planes of circular section are
those which contain the mean: axis.

For the hyperboloid of one sheet, say a<o<b<e, the real
central planes are those which contain the major axis of the
principal elliptic section. :

-TFor the hyperboloid of two sheets, say a<b<o<e, the real
central planes do not cut the surface in real sections, but parallel
sections sufliciently remote from the centre will cut the surface),
in real circles, A plane parallel to the plane of xy cuts the surfaee’
in an ellipse ax®+ by?=£ and a real plane of circular secj:iQp‘i:hen
contains the minor axis of this ellipse. \ %

at & i

~ 10-42. Circular sections of the paraboloids. \ _

The case of the paraboloids requires soié modification.
A paraboloid gx?®+ by*=2cz cuts the pl {at infinity in two
straight lines w=o0, ax®+dy*=c. Thgesé _are real, say HH' and
KK, in the case of the hyperbolic, paraboloid, imaginary, say
HK and H'K’, for the elliptic pareboloid. The plancs of circular
section are found by choosing d86 that o

ax® + by S\ (a2 + y2+ 27)
- factorises, The values ofQare o, a, b.

In the case of %{ Hyperbolic paraboloid the real planes
correspond to A=Y, But this gives planes which cut the surface
in a line at infinity"and another line. We have seen that this pair
forms a degeherate case of a circle with centre at infinity. The
hyperbolies paraboloid  possesses no proper circular sections
other than"its rectilinear generators. The rectilinear generators
of ashiyperboloid do not of course correspond to circular sec-

i1, since they consist of pairs of finite lines, not a finite line
\8hd 2 line at infinity as in the case of the paraboloid.

Inthecaseofthe ellipticparaboloid thereare real proper circular

sections corresponding to A="5 if @ is numerically greater than &.

10-5. Models of thesc surfaces can be constructed of card-
board by fixing together two series of circular sections. If the
planes are hinged at their lines of intersection, these models' are
deformable, being capable of being squeezed or expanded into



206 PLANE SECTIONS OF A QUADRIC  [cse,
different shapes. As an example take the sphere 2+ 3%+ 22=32,
and form two series of parallel sections .
perpendicular to the plane of xz and
inclined to the plane of xy at angles + «.
Then if P is any point on the surface,
and PL and PM are the traces on the
plane of zx of the two planes through
P, and if OL=p, OM =g, we have
¥=(—p-+g)cosa, <
‘3':(?'}'9‘) sin, Fig.g?f\:\
while YE=b"—(g—p)? cos’a—(g+p)* sin%;:("’a :
Now change the inclination of the planes to B For the same
material point P, ¥ is unchanged, but }
x=(q—p)cosf, z= (g—{igz\sin&
Then eliminating p and ¢ we get . ©
¥y*=b2—x®cos®a sec?d < 228In%x cosec?d,

which represents an ellipsoid with semi-axes b sceax cos 8, b
b coseca sind. In the extremeeases when §=o or 90° the planes

N

\\ v |
2K _
O -
I ‘_‘;1;751
o~ L7

O
N\
) L‘h"‘“h |

. Fig. 39. Hyperbolic paraboloid

flatten out and we obtain two ellipses, one in the xy-plane with
semi-axes b seca and b, the other in the y&#-plane with semi-
axes b and b coseca. '
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10-6, Any fwo circles which belong one each to the two sets of
real civcular sections lie on a sphere.
Taking the two sections

u=s+/(b—a).x++(c-b).2—p=0
and o=/ (b—a).x—+/(c—~b).2—g=0,
the equation klax®+by*+c2®—1)fuv=0
represents a quadric containing both circles. The equation con-
tains no terms in yz, zx or xy, and the coefficients of x2 v?and 2
will all be equal if 2=1, : O\

Otherwise, et o, 8 be two mrcular sections. Their p}aftea'
intersect in a line which cuts the quadric in two points U, V.

o Passes through H, H’, and § through K, K'. SingeZeonic is
determined by five points the two sections can, hes aetermmed

apart from the surface, by taking a fifth point,\4 and B re-
spectively, on each. Thus e« is determined by\\the five points U,

V,H, #', 4, and § by the five points &, V; K, K, B. Any
quadric through the eight peints U, 74 ¥ H', K, K', A, B will
then contain the two sections, sined,it contains five points of
each, and it can be made to pass through a ninth point L which
we may choose on the circle 8t infinity. -It then contains five
points H, H', K, K', L omhe circle at infinity and therefore
contains it and is a sphese.

The condition thdt%wo circles should lie on the same sphere
is simply that theghshould have two common points, and this
condition is evidently satisfied by two circles of different systems
ona quadr_igt,\:“‘

10-7. \Qr;blllcs. A circle which lies on a quadric, in.the
hmltlﬂg case when its radius becomes zero, is a point-circle.
These point-circles are called umbilics. There are four real um-
\bl‘hcs Iying in pa1r3 at the ends of two diameters. In addition
there are four pairs of imaginary umbilics, i.e. twelve in all.

If [X, Y, 7] are the coordinates of an umbilic of the quadric
ax®+ byt ex?=1 the conjugate diametral plane is a circular
section. Hence identifying ' '

aXx+bYy+cZs=0
with . v (b—4a).x+4/(c-b).2=0,
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we have

Y=0 and aX=Ay/(b—4q), cZ= 2+ M/ (c—b).

But aXr+ bY?+eli=1,
hence {e(b—a}+alc—b} X =ac,
and therefore A= ++/{acib(c—a)}.
We have therefore

X= t/lc(b—a)ablc—a}, Y=o, Z= ty/{alc—B)fbe(c—fn

10-71. The twelve umbilics, together with the four’akf)éol\utc
points or points of intersection of the conic at infinity’on the
quadric with the circle at infinity, form a remarkable con-
figuration of sixteen points on the quadric. Denbte’the absolute -
points by P, P,, Py, P,; these lie in the glane w=o0. Four -
umbilics Uy, U,, Uy, U, lie in the plane »=0; four, ¥y, etc., in
the plane y=o0; and four, W, etc,, i the plane z=o0. 'lhe
tangent-plane at an umbilic ¥, cqts":the surface in two gene-
rating lines which together form also-a point-circle and therefore
pass through two of the points PRlso through cach of the points
P there pass two generating'iines, i.e. eight lines in all, and all
the umbilics lie on these ‘eight lines. On each line there is an
absolute point P;, say, and three umbilics, viz. the points in
which one gene%ag‘)r’through P, cuts the generators of the
opposite system through the other absolute points P,, P, and
Py. Thus thesixteen points lie in sets of four on eight lines.

Again, the*tangent-plane at U, contains the two generators
through\'bl" and therefore contains seven of the sixteen points,
viz, fiveimbilics and two absolute points. Similarly the tangent-
plane at P, contains the two generators through P, and therefore

4120 contains seven points, viz. six umbilicsand one absolute point.

h
3

A configuration is a figure consisting of points, lines, and
planes, such that on every line there are the same number of
points, on every plane the same number of points and the same
number of lines, through every point the same number of lines
and the same number of planes, and so on. If N,, Ny, IV, de-
note the total numbers of points, lines and planes; N, N, the
numbers of points in 2 line and in a plane; Ny, N,y the numbers
of lines and planes through a point; N,, the number of lines in
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a plane, and Ny, the number of planes through = line, the con-
figuration may be denoted by

.
Ny Ny N,
N N Ny,
Ny Ny N

:

This configuration is therefore represented by

0 4 7 ¢
8 2 NY
4 16 2l

10-9. EXAMPLES. ) \'
1. Tind the coordinates of the centre of ¢l section of the
surface 3x%— 232+ 22=6 by the plane 6x' ,8}54— 3g+11=0,
Ans. Tz, 4, 3] O
2. Find the coordinates of the ccntre of the sectmn of the
surface ga%-42y2 4 ga2=24 made. by the plane 3x—y+22=9.
From the coordinates thus obtamed show that the plane cuts the
surface in a real curve. ,,\
Ans. [2, —1, 1]. \{"
3. Pind the equatlons of the real circular sections of the
quadrics: P,
(i) 4x3§l\2y2+ ¥f3yzt+rr—I=0.
(if) &V 59° — 32*+ gy — 1 =0,
111)\>x~-1-5y +2”2—J’3 4z —xy+4=0.
Aﬂs*\ﬁ) ¥+y—2=0, x—y+23=0,
(11) X+2y-+23=0, ¥+2y—23=0.
(i) x4+y+2x=g, 2¥—y+2z=0.,
4. Find the real circular sections of the paraboloids:
(1) 1ox%+2y2=2,
(1) 3%+ 792+ 822+ r2yz+ 43x+ Bxy = 25— 2y + 3.
Ans, (1) 2x+z=A
(i) gxt2y+52=} 2y+2=p.

SAG I3
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5. Find the real central circular sections of the elfipsoid
13° 43y 4 52%=4.
Prove that the sphere 5{x®+y®+2%)+4x—6v=0 cuts this
ellipsoid in a pair of circles, and find the equations of their planes,
Ans. y=t2x5; 20—y +1=0, 20+y—2=0.

6. Find the directions and lengths of the axes of the section of
the ellipsoid 1442+ 63®+ga?=3 by the plane x+v+3=0., £\
Ans. 1=, [-3, 1, 2]; P*=g)22, [1, —5, 4].

_ O\

7. Show that the plane x4-2y+32=1 cuts the hypérboloid
2x*43%—2x%=1 in a parabola, and find the dircgtiani-ratios of
its axis. 2

't ¥ ;

AN

8. Show that the plane x+2y+ 3z =0-¢uts the hyperboloid
—622-L7y* — 142%=7 in 2 hyperbplafand find the direction-
ratios of the axes. N4

Ans. [7, 1, —-13], [9, —24, 13}« :
9. Find the equation of the cone with vertex at the ori gin and
passing through the cyrve of intersection of the quadriz
\ ax®+ byt cat=1

_with the concentsic 'sphere of radius #. Prove that every tangent-

plane of this gone cuts the quadric in a conic having one axis =r.

10 If théplane Ix -+ my-+nz=o cuts the surface F(x,y,2)=0
ina Fg\c’{}xﬁgular hyperbola show that

,@[m”z+n2)+b(n2+l2)+c(32+m2) —2fmn-"2gnl—2hlm=0.

' '\.f f’én. Find the area of a given central section of an ellipsoid.
- Ans, mabe (TP Zatint,

12. Show that the envelope of plane central sections of con-
stant area of an ellipsoid is a quadric cone.

13.. A sphere of constant radius cuts an ellipsoid in plane

sections; find the surface generated by the line of intersection
of the planes.

Ans. Three cylinders,
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14. Show that the planes, whose sections with a given quadric
have their centres on a given straight line, are parallel to another
fixed line and envelop a parabolic cylinder.

15. Show that there is a doubly infinite system of spheres
which cut a given central quadric in pairs of circles, and that the
locus of point-spheres of the system consists of three conics (the
focal conies),

7
16. Prove that the plane scction of the ellipsoid \\
5ad+ 2B+ et =1 \{:\
whose centre is at the point [a, 18, 3] passes through thrée bf
the extremities of the principal axes of the ellipsoid. (™'
(Math, Trip\:@? 1514.)
O
0
g\'\\./
N\
L)
Vo Dud
\O
‘Q p
:\Qti
e S\ d
\‘wl
O
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CHAPTER XI
TANGENTIAL EQUATIONS

11-1. A set of four numbers [x,, %, &, %3], homogeneous
point-coordinates, represents a point; and a set of four nurbers
[£6> é15 &, &), homogeneous plane-coordinates, represents g
plane. The point and the plane are incident when

o \

boxo+Er%+Eaxy+Esx5=0. 2N
If (5) is fixed and (x) variable this is the equation of ~Ihe plane

(£); if () is fixed and (£) variable, it is the equatlon of the
point (x). "*\

11-21. Tangent=-plane of a su.rface ) \\“

A single homogeneous equation in x‘},\ ¥, %4 represents a two-
dimensional assemblage of points, two-way locus, or (in general)
a surface,

F(x, xu}’fzs xy)=o.
If {«') is any point on the sqrﬁiée and (x" + 8x”) is a neighbouring
point on the surface, scg, that

Flxy,..)=02and F(:&,} Y 8wy, %+ Sy, 0y 5%y, Xy "+ )=0,
expandmg by f ﬂylor s theorem, we have

Q{% v ) =F(ayy o) +E 2 sk,
Xy

Hel}%‘neglectmg squares of the increments,
SN er o
~O % oy O =0
N\ The matrix
17 A U T N
dxy dxy dx) dxy |
represents a line-element of the surface through (x') when
v oF . .
Flx),..)=0and = 557 dx =0, and determines the direction
i

of a tangent-line at (). If (x) is any point on this tangent, this
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line will be that determined by the points (x") and (x) provided
() satisfics the same equation as (dx’). Hence the coordinates
of any point on any tangent-line at {¥") satisfy the equation
ul ﬁF
L f—r xg =0,
ox;

This is the equation of the tangent-plane at (x').

11-22. Point of an envelope.

Similarly a single homogeneous equation in (§) representsca, «
two-dimensional assemblage of planes, two-way cnvelope,\ or
(in general) a surface

q)(‘gﬂyglzg‘a:'g:%):o- ”:"‘.

The matrix |: & & & & T g
ety IR
where ® (£, ...)=oand E 5 dé ‘=0, rep}esents a line-element
in the plane (£'), and the coordinates ;)f any plane which passes
through any line-element in this planc satisfy the equation

ey
EE i 3—-0
S
This is the equation, Qf\the pomt ‘of contact of the tangent-
planc (£7). O

11-3. Tangential equation derived from peint-equation,
and vice-versd.

A sunQ;,g;'“ hich can be considered either as a two-way locus
or as, 4 two- -way envcelope, has a pomt equation and a plane or
tangeﬁtml cquation; and if the one is given the other can be

“deduced.
N\ Let F(xy, %;, &3, %) =0 be the point-cquation of the surface,
'T'he condition that (£) should be a tangent-plane is found by
identifying this plane with the tangent-plane at (x"). Hence

A§i=% (f=0,1,2,3)

and further Yix =o.
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Between these five equations we can eliminate ¥, and A, and thus
obtain the tangential équation in (£).”

By an exactly similar process the point-equation can be ob-
tained from the tangential equation. :

11-31. Tangential equation of the quadric
XX a,,%,%,=0.

The equation of the tangent-plane at {x') is £\
EXa,x,x, =0. A
o
Hence M.=Zax' (r=0,1,2,3), O
" >

and since {¥') lies on the tangent-plane r
TE.x =0. ."’}\\‘
Eliminating x,” and A we obtain the equa@dn

P2\

‘ Gy dn A o ,,gq‘zox

L @y G Gy aas v,

| @n an “gz""’ﬂzg & |

g .a':;ﬁ ' a4y & |

- : | & ..‘fl"v:;fz & o :
which is homogeneoug and of the second degree in £,. If capital
letters denote theséofactors of the corresponding small letters
in the determlzrletn _ A=|ay|

the equati:m'gé‘afr’l' be written
:”\x:.\"’ ZEATs§r§s=O'

As fe point-equation is obtained from the tangential equation

R By exactly the same process we verify a known theorem in de-

pd ,}terminants, that the cofactors of the capital letters in the de-

’ terminant A’=| 4,,| are proportional to the corrcsponding

small Jetters in the determinant A=| g,,|. It can be proved in

fact that A’=A3, and if @,,” denotcs the cofactor of 4,,, then
4, =Ala,,, or a,/{A" =a,fA.

11-4, The general cquation of the second degree in plane-
coordinates thus represents a quadric-envelope. Some special
forms of the equation may be noted,
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If =0 and W=o represent two quadric-envelopes, the
equation DL =0

represents a quadric-envelope which touches ail the planes
common. to the two given guadric-envelopes. In particular, if
® breaks up inte linear factors ¢.ff, © =o represents two bundles
of planes with vertices x=0 and 8=o, and the equation

af+A¥ =0
represents a quadric-envelope inscribed in each of the tangent;,
cones to I with vertices o and f£.
. '\
TFurther, the equation « \,
U=+ \¥=0 N\

N

. ¢ ¢/
represents a quadric-envélope inscribed in the taﬂg}nt-cone to
W with vertex w, and having ring-contact with\t and with ¥
around the conie of contact of the tangent-c;@’n}with W, For the

point of contact of a tangent-plane (5’)of}}" TS g;; =0, and

its point of contact with U is 2ax’ :11»225 -ggf =o. Butif(¢) passes'

through o, then «'=o, and (‘§’:)_?t'0u<:hes ¥ and U at the same
point. ~

4

AN
11-5. Order and I@s ‘of a surface.

In the dual confelation, to a point corresponds a plane, and
wice versa, and 64 line corresponds a line. To a surface con-
sidered as a\;cﬂ?o-xvay locus corresponds in general a surface
consides%fu\ale; a two-way envelope. An arbitrary line cuts a sur-
face in{’afinite number of points equal to the degree of the
eql}i&ibn in point-coordinates, the grder of the surface, Dually,

~lixough an arbitrary line there are a finite number of tangent-
lanes to the surface equal to the degree of the equation in
plane-coordinates, the ¢ass of the surface. :

The points which a plane has in common with the surface
form a plame curve whose order is equal to that of the surface.
Dually, the planes which a bundle (planes through a point} has
in common with a surface (two-way envelope) form a cone. Thus
cone is dual to plane curve. A plane curve is a one-way locus of

oL\

‘.\
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points, and a cone is a one-way envelope of planes, At any point
on a curve there is just one tangent-line, and every plane through
this line is a tangent-plane. In any tangent-plane to a cone there
is just one proper tangent- -line (the generating linc), and every
point on this line is a point of the cone. Thus as a cone is a two-
way locus of points, a plane curve is a two-way envelope of planes.

11:531. In plane geometry the order of a plane curve is defined
ag the number of points in which it is cut by an arbitrary line i\
its plane. In space a line does not in general cut a given cuy Ve,
and the order is defined more generally as the number ofp pmnts
in which it is cut by an arbitrary plane. Dually, for acome there
are in general through an arbitrary line no tangmf‘i)"l'mes, but
through a line which contains the vertex there atda finite num-
ber of tangent-planes ; this is equal also to the dwhber of tangent-
planes through an arbitrary point, and is ¢alled the class of the
cone. The arder of the cone is of course eﬁuai to the number of
points in which it is cut by an arbittary line, and the class of a
plane curve is equal to the number of'tangent-planes through an
arbitrary line, which is the same ds the number of tangent-lines
through an arbitrary point inits plane; dually, for the cone the
order is equal to the- number of generating lines in an arbitrary
plane through its vertgs, Thus to plane curve corresponds cone,
and to tangent corresponds generating line. - :

A plane curve\seqmres two equations in point-coordinates,
one of which,Nihear, will represent its plane. Dually, a cone
requires t@g“equations in plane-wordmates, one of which,
linear, wﬂ'}represent its vertex. A cone is represented by a single
equab\nn in point-coordinates, and a plane curve by a single
egu"lt on in plane-coordinates.

¢ A single tangential equation therefore may represent cither a
N “surface or a plane curve. We shall sce afterwards that it may re-
present any curve, not necessarily plane,

11:52. Tangential equation of a plane curve,

A plane curve, as we have scen, is dual to a cone, its plane
corresponding to the vertex of the cone. The algebraic method
of finding the tangential equation of a plane curve is therefore
the same as that of finding the point-equation of a cone.
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If =0 is the point-equation of the plane of the curve, and
n=0 represents any tangent-plane, the two equations togcther
represent a tangent-line to the curve in its plane, and any plane
through this line, say u#+A?=o, is also a tangent-plane. The
point-coordinates being [x, ¥, 2, @] and the plane-coordinates
[£ m, {, w], if the plane of the curve is w=o or, in plane-
coordinates, {0, 0, 0, 1], then if [¢, 5, {, w] or
Ext+ny+lztow=0
is a tangent-plane so also is '

fx+ny+iz+ww=0 \\ :
- or [¢, 9, {, '] for all values of »', 'T'he tangential equation {;Hﬁ?e-
fore does not contain w, but is homogeneous in ¢, %, {, Andycon-
versely a homogeneous equation in &, v, § vepresents ﬁ'\éz{&be in the
plane w=o0. 2
_ As an example let us find the tangential equafigh of the circle at
infinity whose point-equations are &*+32+2%=0, w=o0. The plane
et ny+ Lz +ow=0 cuts the plane at infii{y)in the line
_ Ex +ny +iz =O;f’“'zb’
and the condition that this should bé, atangent to the conic
x2+y2t??:.¥0, w=0
is 4+ B=o.
Similarly, more genemﬂ‘\}\, the tangential equation of the conic at
infinity on the quadric\\w :
ax? + byt + x4 3fye + 2gm + 2hay + 2px +2qy +2rz +d=0
is ARNBE 1+ CL 42 Fnl +2GLE +2HEy =0,
where capi‘td%{fgers denote the cofactors of the corresponding small
 letters ir;\\ishe:detcrlninant '
\ D=zia & g |
~O ‘ Bbf

V lg f ¢

11-6. Tangential equations of a cone.

When A —o, which is the condition for a cone, the tangential
equation, derived from the point-equation as in II'31, de-
generates. If 4,5 o it can be written

EEAmArsgrgs =0,
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But by a theorem in determinants
JI Aw An EzA dy dy |, €tC.,
c Ay Ay gy |

hence when A=o ApArs= Ay Ay,

and the e.qu'ation becomes
EEAUTADsgf‘Es:O’
ie. (B4 é)R=o0.

This equation thus represents the vertex of the cone, takg:n’t%i?:e;
-and it may similarly be represented by any one of the four

equations TA..E.=0 (z’-: 0, 1,2, 3). ~‘ ‘ ..... r':)
¥ L &

.‘\

1

S

While a plane through the vertex has the prop"é?ty of a tangent-
plane in cutting the quadric in a pair of linesythe actual tangent-
planes of the cone are further specified’as cutting the cone in
coincident lines, Another equation m%,. is therefore required
along with the former one to "repi’eésent this one-dimensional
system of tangent-planes. Forethis we may take the tangential
equation of any plané sectip,rf 0f the cone not passing through
the vertex, or of any quadrie which is inscribed in the cone. For
example, the section b{‘"the plaiie x;=0 is

A) 33

\\ ; zllzllarsxrxs':.os )

and its tangez\i‘tiﬂ equation is
lif@ﬁasa.— ant i+ 2{an ap—ayax) &l =o0. ..., (2)

Thigvkﬁ]ﬁation, together with any one of the equations (1), then

fortn“tangential equations of the cone.
4 o\’ '3

" &

O '11-7. Equations in line-coordinates,

A line in space has four degrees of freedom, and a single
equation connecting the coordinates of a line represents a three-
dimensional assemblage of lines. This is in general a complex.
Two equations represent a two-dimensional assemblage, in
general a comgruence; and three equations represent a one-

dimensional assemblage or &nme-series, such as the lines on a
quadric surface,
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A single equation may also, however, represent a surface or
a curve, for there are co® lines tangent to a given surface, or
cutting a given curve. Such an equation will be called the line-
equation of the surface or curve.

11-71, Line-equation of a conic.

As an example of the line-equation of a conic let us take the
conic at infinity on the general quadric

41
Ezarsxrxs-:os S '\:\.
;=0 being the plane at infinity. O
Let p;=a,b;—a;b; be the line- coordinates of any, l,hle The
point-coordinates of any point on the line are g m{{b\ Hence
the line cuts the plane x,=o0 where A=a,/k,, and the’coordinates

of the point of intersection are N

x;={a,by—ayb; )/bu-—pw/ﬁ,
As this point lies also on the quadru: #e have

21: ? arsp.f(a? §tl =0.

In particular the line eq:ua%ién of the circle at infinity is

s&\“‘J?f"‘ﬂz + P’ =0-

Ex, Prove that th‘e}h‘ne -equation of any curve in the plane x;=0
is homogeneous iDPers Doz » Pog s and corwerscly that any homogenecus
equation jn p,n, p\z ) Pus represents a curve in the plane x,=o.

11-72. L“i!te -equation of a quadric.

I'hls\’\s thc condition that the line (p) should touch the
qua@né Let the line be the intersection of the two planes
\ Q w=nE%,=0,
B=En%;=0.
Then for some value af the ratio Afp the eqmnon Aot pf=0
represents a tangent- plane to the quadric. If (y) is the point of
contact we have
B Yo G Y1+ ap Yyt @ Ys=Ar T (=0, 1, 2 3);
also Z¢,y,=0 and Ty, =0
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Eliminating ¥y, ¥1, ¥, ¥2, A and ¢ between these six equations
we get

Qg Gy Qgp  fog g_o Ty =0

G n e y & M
Ay du G G & M
Qy @y (g Gy &y 1
b & & & o o
Mo T " @ ©C A +
When this determinant is expanded it can be w ritter( i¥a
homogencous equation of the second degree in the line- ~coptinates

7 ‘.

31“‘5 1;':1 fjnl .\

11-73. Polar of a line (p) with respect to a gi%n quadric,
The polar plane of (x") with respect to the ‘quadric

=Y 4,5k, %, =0 '\‘\
is EX a5, %, 20w

Hence the polar line of the line, joirting {(+') and (x") is
S a. bk, =o}
Liap,x=0f *

Now Bo= xS —x e

and if m;; are the L'\fié’—‘éoordinates of the polar line

£ ’ # ¢ .2
Wy x—“Eaisxs 2agn —Ean ax,
QY
£ ) _Zz(atrafs_ajwa{s)Pfs-
o \ud L]

‘..\:' ; . .
11,74 From this we can deduce-in another way the line-
equation of the quadric. ‘The line (p) is a tangent to the quadric

w&hen it meets its polar. The condition for this is
N

N\ ) ZXpym =o.
Hence substltutmg the values of w,;’ we obtain the Iine -equation
of the quadric in the form
EEEZ (azrass a_:l‘r %S)Pt:rprs - O:

tire

where 7, f and 7, 5 take the successive pairs of values o, 1; 0, 2;
0; 372, 33 3, I; I, 2 independently.
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In terms of the coefficients of the tangential equation the line~
equation is similarly _ _
EEEE (AirAfs - AjrAe's) Wiy Wps— On
ijra
If the quadric is a cone with vertex [o, o, o, 1] so that gu=0
(i=0, 1, 2, 3), the line-equation contains only pu, P, P, OF, if
it is expressed in terms of @y, it is homogeneous in @y, W, s
Ex. 1. Show that the Jine-equation of any cone with vertex £,=0, £\
is homogeneous in my , Wy, Wey; and conversely. R
Ex. 2. If the point-equation of the quadric is A\
Z ax, =0, A\
show that its line-equation is

y
22 g a.p st =0,

11-8. We can now amplify the classificatiopof quadrics in the
cases of degeneracy. A
When [A] is of rank 3, the quadric @s.adocus is a cone, Ifthe
point-equation is o\
a0y A%, K % =0
the plane-equation degeneragpéi;}.b £.2=0, which represents just
the vertex of the cone twice, The determinant [V] is of rank 1.
The cone, however, is\répresented completely in plane-co-
ordinates by the twie eqtations
y=orand £,%a;+ & fay+ &P fay=o0.
The line-eq'uaﬁoﬁ is
\’ Ay P+ A8y P + B s 1" =0
WhénfA] is of rank 2, the quadric as a locus degenerates to
t‘:’gg.”planes. If the point-equation is
Q Ag %2+ a4, %, =0,
the plane-equation completely degenerates, [V] being of rank o.
Consider the quadric
g Kg? + @y Xy P+ €EE g 8 X = O

Forming the tangential equation and arranging in powers of e
we find '

SEN A, £ 6+ eﬁK—eanaL(a33§2?+a22€32— 28536:€5) =0,
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Divide by ¢ and let ¢ -0 and we get

_ s Ea®+ anby® —2an6,6,=0,
which represents two points on the line joining & =0 and =0,
i.e. on the line yy=0=1x,.

In this case the point-equation and the plane-equaticn must
be separately given, and the matrices of the coefficients are in
general each of rank 2. We have the following cases:

[A] of rank 2, [V] of rank 2. The quadrie consists as a locus
of two distinct planes through a line /, and as an envelope off two
distinct points on the line Z >

[A] of rank 2, [V] of rank 1. Two distinct planes through a
line J, and two coincident points on L

[A] of rank 1, [V] of rank 2. Two coincident plhnes two dis-
tinet points in this plane.

[A] of rank 1, [V] of rank 1. Two comudﬁi}t vplanes ; two coin-
cident points on this plane. AV

11-9. EXAMPLES. '

1. Show that the envelope of planes which cut a given quadric
in sections whose centres 11e~ on a given plane is a paraboloid.

2. Pairs of orthogonal tangent-planes to a given quadric pass
through a fixed pmm‘.,\show that their lines of intersection
generate a quadnc Eone.

3. Show that >
fqrx*+grﬂy2+kpgzg +fgkw2+(fp — g9 —hr)(pyz + faw)
&0 hr—1p) gz gya) -+ (hr —fp— gg) (ray + haw) =

repres}ts a quadric which touches the four faces of the tetra-
hed“ron of reference.

y“Show also that the conditions that the lines joining each point
of contact to the opposite vertex should be concurrent are .

fp=gq="hr.

Show that by suitable choice of unit- -point the equation can
be written

%%+ y? +ze+w2+2l(yz+xw)+zm(z&+yw)+2n(x:y+zw)=0,
where almn—B-m? —n? {1 =0,

Q"
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4 If F(x, y, » w)=0 represents a cone with vertex
14, B, C, D] show that its tangential equations are
Aé+By+Cl+Do=0
and . :
(be—f2) 82+ (ca—ghm +(ab— k) 2+ 2(gh—~af)n{
+2(hf—bg)tE+2(fg —ch)én=o0.

5. A quadric cone has vertex A and a circular base of which A
Pis any point. Show that the envelope of the plane through £ N\
perpendicular to AP is another quadric cone, and that it cufs )’
the plane of the circle in a conic the foci of which ar .
orthogonal projections of the vertices of the two cones \

(Math. TripAly 1953
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CHAPTER XII
- FOCT AND FOCAL PROPERTIES

12-1. A focus of a conic is a point such that every pair of lines
through it which are conjugate with regard to the conic are also
at right angles. In general through any point there is just one,
pair of conjugate lines which are at right angles. Pairs of cons
Jugate lines through a point P form an involution whose double-
lines are the tangents from P to the conic: pairs of or{fiogonal
lines through P also form an involution and its double-lines are
the lines joining P ta the circular points 7, /. Fé#yan ordinary
point F these two involutions are distinct, and Si};l\:e one of them
at least, the involution of orthogonal lines, elliptic, they have
always a real pair of lines in common (3:—9?)’. If, however, P is
a focus F, the two involutions coincides the lines 77 and FJ are
tangents to the conic, As these two [ines also form a point-circle,
we may say also that the foci of a%onic are point-circles having
double contact with the conic;i’ﬁé chord of contact is the corre-

sponding directrix, N

N

12-11, Focal axes.

For a quadric surlffz:age these ideas may be extended in two
different ways. JFirst, we may consider pairs of planes through
a Hne, orthogehal and conjugate with regard to the guadric.
Pairs of comjiigate planes form an involution whose double- _
planes af¢hthe tangent-planes to the quadric, and pairs of
orthq%g’nal planes form an elliptic involution whose double-
pladestare tangents to the circle at infinity (i.e. cut the plane at
Aftfinity in lines tangent to the circie at infinity). In general these

\”‘§two involutions have one pair of common planes, which are
always real, But for certain lines the two involutions coincide,
and every pair of orthogonal planes are also conjugate. Such

lines are called focal axes. The pait of tangent-planes through 2

focal axis cut the plane at infinity in two lincs which touch the

circle at infinity, hence they form a circular cylinder whose
radius is zero. 4 focal anis is therefore the axis of a circular
cylinder of zero radius which has double contact with the quadric.
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12-12. Foci. _

Second, we may consider triads of planes through a point,
mutually orthogonal and conjugate with regard to the quadric.
If the point i> does not lie on the quadric any triad of mutually
conjugate planes through P are also mutually conjugate with
regard to the tangent-cone from P. But of these sets there is just
one which is orthogonal, viz. the three principal plancs of the
cone. If the point P lies on the quadric the tangent-cone de-
generates to a plane; the three planes then consist of the tangent-
plane and the two planes which contain the normal and onewf/)
the bisectors of the angles between the two generators thréugh
P. Thus in gencral there is just ane such triad of planesgheough
a given point. But for certain points the triad bégbmes in-
determinate, 1.e. an infinity of triads are possible} ~“L}ing on the
quadric the only such points are the umbilicspand for a point
not on the quadric the triad becomes indetéfntinate only when
the tangent-cone is circular, Such pointsythrough which there
is an infinity of mutually orthogonal 4nd“conjugate planes, are
called foci. A focus has thus the propérty that the fangent-cone
from a focus to the quadric is circiilar.

The tangent-cone cuts the plihe at infinity in a conic €’ which
has double contact with thé'eircle at infinity £, hence it follows
that the cone with vertex'#and containing £ touches the tangent-
cone along two generators and has therefore double contact with
the quadric. But #his cone is a point-sphere. Hence @ focus is
the centre of & spke're of zero vadius having double contact with
the quadric./EMe chord of contact is called the correspondmg
directrim ()"

Let Oy V be the points of contact of €’ and Q, and let the
tangents at { and ¥ intersect in 7. Then FT is the axis of
’I’Qtatlon of the tangent-cone. FU and FV touch the quadric in

‘and Q, say. Then PQ is the directrix for the focus F. Also the
two Planm FTU and FTV form a circular cylinder of zero radius
having double contact with the quadric at P and Q, and there-
fore FT'is a focal axis. Hence through any focus theve is one foeal
axis, which is the axis of votation of the tangent-cone from F.
Since the planes FTU and FTV are tangent-planes to the quadric
at P and Q, the focal axis T is the polar of the direciriz PQ.

BAG . I3

Q"
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Again, since the tangent-cone has ring-contact with the
quadric on the conic S, their sections €” and C by the plane at
infinity have double contact on the line of intersection / of the
plane at infinity with the plane of 8. Let L be the common pole
of [ with respect to C and C; and let O be the pole of the plane

"\ “ Fig, 4o

at‘i\ﬁmty with respect to the quadric, i.e, the centre. Then OF
\IS ‘the polar of [ and therefore passes through L. The point at

\“infinity R on the directrix PQ is the intersection of PQ with UV
. and lies on I The polar-plane of R with respect to the quadric

is TFO, hence its polar with respect to the conic C is L7. But
since it lies on [ its polar with respect to ” is also L7, and,
since it lies on UV, LT is also its polar with respect to 2. Hence
since R has the same polar with respect to both C and €, it is the
point at infinity on one of the principal axes of the quadric; it8
polar-plane OFT is then the corresponding principal plane.
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Hence a focus F and its focal axis FT lie in a principal plane of the
quadric, while the corresponding divectrix is parallel to the corre-
sponding principal axis. Since T is the pole of UV with respect
to £, the line F7 is perpendicular to the plane FUV, i.e. the
plane through a focus F and the corresponding directrin is per-
pendicular to the focal axis through F,

A focal axis which does not lie in a principal plane does not
pass through any focus, A focal axis may be obtained from any
chord UV of Q. Through each of the tangents U7 and ¥ 7 can
be drawn two tangent-planes to the quadric, and the four lings,*
of intersection of these form four focal axes through T, ie. f&ur
parallel focal axes, two real and two imaginary. Tha corre-
sponding chords of contact PQ with the quadric asg not in
general coplanar with UV \\

12-21. Fecal axes. \

We shall treat the problem now analyt(cally confining cur
attention for the present to central quadncs Let the equation
of the quadric be

X2 oyt )
Q;
A+B+C ’
and suppose a focal axis to,”be determined as the intersection of -
the two planes xm\

zzi%'éi—tmy+nz+p=o,

: u’=l’x+m’y+n’z+p’—o

A plane through the intersection of these is represented by
&5ﬁﬁx+0n+hﬂbﬂ%ﬁ+hnz+@Hdp) o.
Conslder\ this plane and a similar plane with parameter p
ingtéad of A. "I'he condition that these two planes should be
\Ol‘ﬂ‘lognnal 15

Ap (%4 m'® + 1'2) 4 (A 'u)('ll’+mm’+mz’)+(l2+m2+n2)=e
and the condition that they should be conjugate with regard to
the quadric is _

Ap (Al Bin's + Cn'2— p'%) 4 (A+ w){ AL + B’ + Crnt! —pp")

|+ (AP 4 Bm*+ Cn*—pt)=o,

15-3
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If their line of intersection is a focal axis these two conditions
must be identical for all values of A and . Ience

Al*+ Bm'*+ Cn—p' Al + Bmm' + Cun’ — pp’
I2rm'?ta? - I +mm’ +nn”

AP+ B+ O p?
RBymétnz

...(1)

If one plane is kept fixed, say I, m’, ', p’ are given, we hawé\
two equations, one linear and one quadratic, to determine, the
ratios of /, m, n, p. If (I) is any one plane qatlbf)mg ‘these
equations, then ({+A"} will also satisfy them. Thue these
equations determine two pencils of planes having, thltr axes on
the plane (). Hence in general there are two f({ml axes in any
plane.

- Equating each of the ratios (1) to 2, )Wwe get the three
equations \\\

A-nk +(B—r)m?' +(G—t)n2 —p? =g,
(A-0)0"*+(B— )'2.+(C Hn'? —p'?=o,
(A—HU +(B- t}mm"+(c-x)nn —pp’ =o0.

Bolving for A—#, By ol t, and writing mn’ —m'n=py,

Pl —p'I=pu, etc. (,the,\hne coordinates of the focal axis), we
have

(A - t)f’o-z?oe =P P
. \‘ > (B— 1) Pos Por = Prabess
M\’ . (C—BD b Po=pupn.

Th?n\eliminating ? we cobtain the two equations .

=\ ’}1;1 (APoePos — PsrP12) = Pon(BPyspos — — Protos) = Pos{(CPu Poo— PasParh

" which represent the whole two-dimensional assemblacre of focal
axes, or the focal congruence,

Ex. Bhow that the equations of the focal congruence can also be
written

{(Poalra +PosPra) Pos _ {Bosten + Py Do) Py (Pulf’n + P:}zpsz) P
B-C c—4 A—p " Pnbelw
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12-22. Focal conics.

‘'he principal planes of the quadric are exceptional. Taking
(#') as the plane x=o0, so that I'=1, m'=0=n"=p", then the
‘equations (1) of 12-21 reduce to '
AL+ Bm?+ Cn? —p*

A=4= P+ m? 4 pd

which give only the one equation
{(A-Bym?+(A—-C)nt4pt=o0,
T'he plane x=o therefore contains an infinity of focal axes, Whg's:?:“.\
envelope is the conic _ \
I
B—4tc—a~"
Similarly we have conics in the planes y=o afdd\z=o.

These three conics are called the focal ¢éules of the quadric.
If 4>8>C the conic in the plang’ .ohyz is virtual, that
in the plane of zx is a hyperbola, dod that in the plane of
xv i1s an ellipse. This holds whel;her 4, B, C are positive or

negative. &N

12-23. Foci, X :
Consider now any poth [X, ¥, Z),anda plane through P,
I(x :—-})\er(y V)+n(z—Z)=o.
Let the pole of‘i’iﬁ’s“ 'pIane with regard to the quadric
D7 #jA+yBe|C=
be Q {%“ Y’, Z’]. Then, identifying the equation
"\" xX'{d+yY'[B+= ’;’C’*I
\Qlth that of the given plane, wc have
v 7
: Al” Bm Cn IX+mY+nd'
Also if PQ is perpendicular to the plane,

X-X V-Y Z-Z A
I =" m  a  X4mY+uZ

X=0, ’\ L &

say.

N ¢
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i o,

.\’ 3

Hence - Al-X(IX+mY +nZ)y=2A, etc.,
e (X*—A+Ni+ XYm+ XZn=o,
XYI+(Y2—B+Mm-+ YZu=o,
XZI+ YZm+{(Z2:—C+A)n=o0.
Eliminating /, m, #, '
X A+x VX zZx =0, N
XY Y:-B+d ZV .
| XZ vZ ZE—C+A R\

In general this gives three real values for A, and) these de-
termine one set of three planes through P, mutuaﬂy orthognnal
and conjugate with regard to the quadnc If,\\however, every
element of the determinant vanishes, i.eNf¥the determinant
is of rank o, the three roots will be egial, and every set of
three mutually orthogonal planes thedugh P are also mutually
con_]ugate Such 2 point is called a pm;apal 'focus. The conditions
for this are R\

YZ=0, ZX=o, XY-—.6;"‘A‘ X:=B— YV C— 7=\

Hence two of X, Y, Z miust vanish, say ¥Y=o0=7Z, and then
B=C=X and X 2—&B The quadric is then a quadric of
revolution, and t%f: are two principal foci (real or imaginary),
which are the foc f the meridian sections which lie on the axis
of rotation,

If the e;ermmant is of rank 1, two roots of the equation in A

will bewequal P is then an ofdlnary focus. The conditions for
thig

(A=B)Y(A=C)+ Y2(A—C)+ Z2 (A~ B) =o,
A= O A—A)+ 22 (A~ 2) + XA C) =o,
A~A)(A—B)+ X*(A-B)+ V2(A~A)=0,
and  YZQ-A)=0, ZX(A~B)=0, X¥ (A~ C)=o.

If A=B=C these equations are all satisfied when A= 4, ie.

for a sphere every point is a focus, the centre being the only
principal focus,
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Excluding this case, one at least of X; ¥, Z must vanish, say
X=o0. 'I'he equations then become '
A-B)A-CO)+ YVEA—-C)+ Z:(A-B)=0,
(A—A)A-C+ 2% =0,
A—ADA—B+ Y=o,
(A4 YZ=o,
which are satisfied when A=A and
V2(A-Oy+Z23(A-By+(4-B)(A-C)=o0.
IHence we obtain a locus of foci on the plane x=o forming \tﬁe\

focal conic _ W
2 P N

N

¥
B-4 c-a"* R
The foci of a quadric are thus the points of the three'focal conics.
For a quadric of revolution with the axig«bk as axis of re-
volution, B =¢, and we find either Y=0 and’Z=o0 or X=c and
Y2+ Z2=B—A. In this case thereforéthe focal conic in the
plane x==0 becomes a circle, while, the other two degenerate
to the axis of rotation which cgf;té’ins also the two principal
foci. N

TN
~ 3

12-24, We may inn*estigat;f:" the foci also as the centres of
spheres of zero radius Iraving double contact with the quadric.

Let S={x X"+ (y— V) +(z—Zp =0
represent a point-sphere at [X, ¥, Z], and denote the quadric
by F=o. Th.gﬁ, the equation

;"\',“’ S —af=o0

rcpresgsrl%“a quadric passing through the curve of intersection
of xSi and F.
\Now if S touches F at two points the curve of intersection has

aouble-point at each of these points. Draw a plane through
these two points and any other point on the curve of intersection.
This plane has then five points in common with the curve; but
the curve is only of the fourth order, hence it has an infinity of
points in common with the curve. The curve of intersection
therefore breaks up into two plane curves, each a conic. We can
therefore choose A so that the equation S —AF =0 represents
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‘these two planes, say .5 ~AF=xf8. Hence the quadric will have
a focus F=[X, ¥, Z] if its equation can be written in the form

(3= X+ (y— TP (3 2 =af,
where o and § are expressions of the first degree in x, ¥, 2
« and B represent the two planes, real or imaginary, which |
contain the curve of intersection of the quadric with the point-
sphere, They are therefore plancs of circular section. Their line
of intersection 4 is the line joining the two points of contack P
and O, and is the directrix correspondmg to the focus Fig'being
the intersection of two circular planes it is parallel to eie - of the
principal axes, viz. that one which is perpendicular, to “the prin-
cipal plane in which F lies. The tangent- planeé at P and Q
intersect in 2 line f which is the polar of the dr{éctm( Any pair
of planes through f which are harmonic conpjugates with regard
to the two tangent-planes are conjugate. Q@Ih regard to hoth the
quadric and the point-sphere, and ’1{{'& therefore orthogonal.
[ is therefore a focal axis and by 322 is a tangent to the focal
conic. As the tangent-planes_ pas“s through F, f also passes
through F, which is therefor& the point of contact of f with the
focal conic. If the dlrectrix cuts the principal plane, which
‘contains the focal conig, 181, fis the polar of D with regard to
the principal section ®ne set of three mutually orthogonal and
conjugate plane{éhrough £ consists of the plane of the focal
conic, the plahe through f perpendicular to the principal plalle,
-and the plzme through F
perpendlcular to f. But
- the last{plane contzins d,
smeé\It 1s the polar of f.
Hence D3I7is perpendicular
(46 f and therefore normal
\ ™ to the focal conic. The
principal section being |
YYBA 2% C=1,
and the focal conic - Fig. 41
VB —-A)+22{(C—A)=1,
these are confocal; they cut orthogonally at the umbilics, These
relations are shown in Fig. 41. '
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12-25. As already remarked, the only foci which lie on the
quadric itself are the umbilics. These are therefore the points of
interscction of the focal conics with the quadric, or with its
principal sections. The circular planes through a directrix 4 are
parallel to the tangent-planes at the umbilics 'which ke in the
principal plane perpendicular to d.

"T'he foci of the focal conic

(B =AY+ 32Y(C—Ay=1

are wm0 y=o0 ) P
and v, 2 A\
y=+V(B-C) a= t(C-B)]T L
The former are vertices of the focal conic Mt

BA-C)+y¥(B-C)=1,

4
and the latter are vertices of the remaining focal €onic
22[(C—B)+a%/(d - By=Ax)

Thus each of the three focal conics pasgeé.\ through one pair of
foci of cach of the other two. LEven the)¥irtual focal conic thus
possesses z pair of real foci {the ¢ads of the minor axis of the
focal cllipse), though the corresponding eccentricity is of coursc
imaginary; the eccentricity cdrkesponding to its imaginary foci
is real, o L '

Ex, Show that for pafﬁt\s on the focal ellipse the circular planes

arc imaginary in the ¢ase of the ellipsoid and real in the case of the
hyperboloid of twa'sheets, and wice versa for the focal hyperbela.

12-31. Tt:f‘é}lflation
O (= XP e+ VP (- 2P =op
expreghes a metrical property of the foci, viz. the ratio of the

sq;,:@;é"af the distance of amy point on the quadric from a focus to the
“pinduct of its distances from the two circular planes is constant,

\ Ex. Show that _
A A+ B4+2C—1) = +(y— YP+{z—2Z)%
B-4/ BY )2_9_14 (s- CZ e
-5 VWTB-4/ ¢ C=4/"*
N B
where B-ATC=AT"
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12-32. Taking a focus as origin, the equation of the quadric
can be written Kty tat=uf,

=0 being the equation of the two circular planes whose inter-
section is the corresponding directrix. If we choose further the
plane #=o0 as the plane containing the focus and its directrix,
this plane cuts « and £ in the same line, say #=o0 and

u=lx+my+n=o, ~
Flence the section of the quadric by this plane is

F=0, ¥7+yi=ut. \‘“\
But this represents a conic with focus at the origin andidivéctrix u.
Hence the plane containing a focus and the correspopiding directrix
cuts the quadric in a conic having these as Jocus dpd divectrix.
Also since this plane is normal to the focghgohic on which the
given focus lies, every plane normal to a Josabtonic has for a focus

the point where it meets the focal conic @t‘mab‘y.

12:33. We may prove these resultdvdiso as follows. The focal
axis f through the focus F is the axi§ of rotation of the tangent-
cone from F. "This cone has whzcontact with the quadric. Two
quadrics have ring-contacﬁi‘when their curve of intersection
reduces to two coincident ‘conics: in this case any plane cuts
them in two conics wltich have double contact at the points
where the plane %@;ﬂxe deuble conic.

Let o be the platte through F perpendicular to f. Then « cuts
the tangent-cofe from F in a point-circle, i.c. in two straight

- lines passin’g'\through the circular points 7, J in «. It cuts the
quadrigdna conic having double contact with this ling-pair, 1.e-
FI axi&“F] are tangents to the conic, and therefore F is a focus
of; 'fcjhe conic. The plane « also contains the corresponding

.. (directrix d of the quadric, and this is the polar of F with respect

Jto the curve of intersection, and is therefore the directrix also
for this conic.

12-34, Dandelin’s Theorem.

The well-known construction for the foci of a plane section -

o_f a circular cone follows from the property of quadrics having

- ring-contact. The cone being circular, there are two spheres
inscribed in the cone and touching the plane, Each sphere has
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ring-contact with the cone, and therefore the curves of inter-
section of the plane with the cone and one of the spheres have
double contact. But the intersection of the plane with the sphere
is a point-circle; hence this point is a focus of the conic section.

Ex. Prove that the tangent-plane at an umbilic of a quadric cuts
any tangent-cone in a conic having a focus at the umbilic.

124, Confocal quadrics.

Two quadrics are said to be confocal when they have the same
focal conics. Confocal quadrics have therefore the same prins,
cipal plancs. Confining our attention for the present to géntral
quadrics, it ' A\ .

P A+y B+ C=1 O
and 52 A" 4y B 22 =1 \\
are confocal, B—C=B'—C’, C—4=C" -4 A—B=A"-B
(the third equation following from the'\ﬁr\t two). Hence if
A'= A}, then B'=B—Xand C"=GXX The equation
x‘Z y'—’ ’:’ zﬁ _
Rl L
therefore rcpresents all thathiaidrics which are confocal with
$2{A+ 2B+ 22/C=1. Thtse form a system of confocal quadrics.
It 4, B, C are all gnequal we may assume that 4> B>C.
Then if A< o the duidric is an ellipsoid, for B>X>C a hyper-
boloid of one sheet, for A>A>B a hyperboloid of two sheets,
and for A> Ats virtual.
'The critipat values, A=A, B, C, make the quadric degenerate,
e.g. A=4 requires x=o0 and y(B—A)+ =z {(C—-A)=1, which
is 011,8% the focal conics. The focal conics are therefore de-
geg}:ﬁlte quadrics of the confocal system. '
“\Mf two of the quantitics 4, B, C are equal, say B=C, all the
N quadrics of the systems are of revelution. "The focal conic in the
plane of y2, which is perpendicular to the axis of rotation, is a
circle of radius 4/(B—~4), real or virtuzal according as A < or
>B. The principal planes perpendicular to this arc inde-
terminate, but in each of them the focal conic degenerates to the
same pair of points [£+/(4—B), o, o]; these are the real foci of
the meridian section if 4 > B, and are principal foci; the virtual
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focal circle then passes through the two imaginary foci of the
meridian section. When 4 < B, the focal cirele, which is real,
passes through the real foci of the meridian scetion.

If A=B=C, the quadricis a sphere and all the principal foci
are collected at the centre.

12-41. Confocals through a given point,
Through a given point [X, ¥, Z] there pass in general three

quadrics of a given confocal system. 1'he equation of the systém
being

Xy Rt O
Aatptenso O
if this equation is satisfied by [X, ¥, Z] we obtain adithic equa-

tien in A; K7,
S N=A-DR-B) A0+ T B O) Koo,
Assuming that no one of X, Y, Z is zero, and that 4> B> C, if
we substitute 4D

.A='—OO’_ Ca B; J’i;\ + oc,

the signs of ¢ () are —  + O% .

‘Hence the roots are all real : the iréf root, < C, gives an ellipsoid
the second, between € and Bjgives a hyperboloid of one sheet;

and the third, between Blnd 4, gives a hyperboloid of two
sheets, ’a

Exceptional cases ,aﬁc\ur when the point [X, ¥, Z] lies (1) in one
of the principal planes, then one of the three quadrics reduces to
that plane; (2) iiyone of the principal axcs, then two of the quadrics
reduce to the@sificipal planes through this axis; (3) on one of the
focal conicg, ‘then two of the quadrics reduce to the plane of this
COf‘liC; (£)3t the centre, then the three quadrics reduce to the three
prlnciga,l planes; (5) at a vertex of one of the facal conics, then two

of ','5‘1:1B quadrics reduce to the Plane of this conic while the third
z¢duces to the other principal plane through the point. '
L) As regards the nature of the surviving confocals through a point,
\ ) the reader may verify the results indicated in Fig. 42, where
E, H,, and H, stand for ellipsoid, hyperboloid of one sheet, and
hyperboloid of two sheets respectively,

12-42.. The three confocals through a point are mutually
orthogonal. Let the roots of the cubie equation in A,
XE O ye yA
ATt
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be denoted by A, Ay, As. The tangent-planes at [X, Y, Z]

are X ¥y 7 .
A tpoa oot GTval

Now

- X2 1 . ( X2 X2 )
T S E Ty 2\ -1=0,
(A_;’\l)(‘q“)“a) )‘1‘>‘2 A_)‘l A—'Az .
The confocals therefore form a triple orthogonal system.

P

_ ¢ \..3 Fig, 42
12-43. Confocal quadrics in tangential coordinates.
The tangengial ééuation of the confocal system is
QAN B+ (B-XNm+(C—Nn=1%
or '\%R’fl2+m2+n2)—(AF+Bmz+Cn2—92)=0- veere(1)
This equation is linear in A, and if 1, m, n, p are given,.a unique
’Vﬂiu\a 'of A is in gencral determined. Hence one and only one
\gu’adﬁc of a confocal system touches an arbitrary plane.
The equation is satisfied by any set of values of 4, m, n, P
which satisfy the two equations
AP+ B+ Cn—pi=0 and E+mP+ui=o.
These equations represent two quadrics of the system. The
latter, however, is a special quadric whose only real tangent-
planc is [o, o, 0, 1], i.e. the plane at infinity. The equation ex~
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presses the condition that the line of intersection of the plane
Ix+my+nz+pw=c with the plane at infinity w—o should
touch the conic #*+y*+2?=o0, w=0, i.e. the circle at infinity.
The equation B+ m2+n®=o is therefore the tangential cquation of
the circle at infinity. Thus in addition to the three focal conics,
which are degenerate quadrics of the system lying in the prin~
cipal planes x=o0, y=o0, =0, there is a fourth degenerate
quadric of the system, the circle at infinity, in the plane w=on,

The equation (1) represents a lincar tangential system “of
quadyics determined by a given quadric A+ Bm2+ Cnt < p¥o
and the circle at infinity. Any plane which touches theke two
quadrics, or indeed any two quadrics of the systeng; will touch
them all. Such planes are in general only imagirfady.

The tangential equation of the point of cefiact of the plane
[Efi m') ﬁ’} Pr:[ iS \J

(A=X)T+(B=Nm'm+(C - Xahn-pp=o,

1Le. the coordinates of the point of cantact are

_ [(A—-A)l', (B—)k)?r%',}“(c-—}()n', "P’J’
and by giving all values to A we get a straight line joining the
point A7, Bw’, Cn’, — p']"tc:i.‘the point at infinity [7', m', #', o}
Hence when a plane touches two quadrics of the system, and there-
Jore all of them, the poinis of contact lie on a line.

12:431. The planes which touch all the quadrics of the
system, ie. the(assemblage of common tangent-planes to two
quadrics ofMHe system, form 2 one-dimensional assemblage
and generdte’a developable. This is called the focal developable
and iS\{’él\)ii-;sented by the two simultaneous equations

;‘.f'\ Btm*+ut=o0, AP+ Bm?+Cn*—pi=o,

We'shall return to this in another chapter.

/N

\/ 1244. Confocals touching a given line.

Let I be a given line. The pairs of tangent-planes through /
to quadrics of the system form an involution, for if @ is any plane
through [ there is one quadric which touches o, hence a second
tangent-plane «' to this quadric is uniquely determined; and
conversely to o’ corresponds a. The two tangent-planes coincide
when the line is a tangent to the quadric, and form the double-
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elements of the involution. Hence there are two quadrics of the
system which fouch a given line. As the involution contains as one
pair the planes through ! which touch the circle at infinity, and
as the double-clements are harmonic conjugates with regard to
them, it follows that the tangent-planes to the two quadrics at their
points of contact with | are at right angles.

12:5. The parabuioids.

As a confocal system of quadrics is the linear tangential system
N

determined by one quadric and the circle at infinity, and since X

the planc at infinity touches the absolute circle, it follows dhat
if one quadric of the system is a paraboloid, the plane atinfinity,
which then touches two quadrics of the system, will t6lich them
all, and therefore all the quadrics will be parabol'otiﬁs. As the
focal conics are degenerate quadrics of the sydtem they must
be parabolas. i N

Let the equation of the paraboloid begsN

M A+y4B fﬁ;i )
Let F=[X, Y, Z] be a focus, at}dfic’:éﬁsidcr a plane through F
l(x——X)—i—m(y.—f;‘i})’-{-n(z—Z):o.
The pole O=[X", ¥, Z kéf this plane is given by

x _§‘~; B
AR Bn w IX+mY+nZ

%

and, if FO is péependicular to the plane,

JOX X V¥ 22 )
O T T e ay;
then s —Al -nX=N,
~O —Bm—nY=Xmn,

—(IX +mY +nZ)—nZ=2n.
Eliminating I, m, », :
| A+4 o X =0,
) A+B Y i
X Y A+2Z |

This gives as before a cubic equation in ), having in general

N
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three different roots. If all the elements of the delerminant
vanish the roots are all equal and we have

A=—4=-RB=—27, X=0=Y.

The paraboloid is then a paraboloid of rotation and we have 2
single principal focus at [o, o, $4]; this is the focus of the meridian -
section. : '
If the minors of the determinant all vanish two roots are equal
and the tangent-cone with vertex F is circular, its principal a%is
corresponding to the double-root. The conditions for thid 3ré

A+ AYA+22) = X2, O
A+BO+22)=1y, N0
O+ DA+B)=0, 3
Y()l + A) = 0,:.\\‘:
X{(A+B)=0, ©
XN,
These are satisfied by A

(i) X=o0, A= ~4,j~;i}é;(A—B) (A -27),
(ii) Y=o, A= B, X*=(B—A)(B-27).

Hence we have twgcﬁual focal parabolas, with axes along the
axis of z and vertideS i opposite directions ; each passes through
the focus of the dtheér. In the case of the elliptic paraboloid one
of these cutg the surface orthogonally in the two real umbilics;
the otherx}:.\zlra’bola, and both the confocal parabolas in the case
of the hyperbolic paraboloid, meet the surface in Imaginary
poings.\”

1251, Confocal paraboloids.
) The tangential equation of the paraboloid
F[A+y [ B=23/C
is . AP+ Bm?=2Cnp, .

and therefore the tangential equation of the system of quadrics
confocal with the paraboloid is '

AP+ Bmr - 20np— A4+ m2 + n%)=o,
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The point-cquation corresponding to this equation is then found
to be gt 2w A
A-A"B=-2TC ¥

Assuming 4> B, when A> 4 the quadric is an elliptic para-

boloid with vertex downwards, when 4>A>B a hyperbolic

paraboloid, and when A < B again an elliptic paraboloid, but with
vertex upwards, The focal parabolas arc limiting cases separating
these series. The third focal conic, which should exist in the
general case, coincides in the case of the paraboloids with they,
circle at infinity. O

'Through any peint [X, ¥, Z] there are again three guadrics
of the confocal system, corresponding to the roots ofsthe tubic
cquation in A: ' N

qS(A)EA(A—A)(A—B)—C"-Xz()\—B)—62}%&—1{{)

o —2ZC"A)(A—B)=o0.
When ‘A=—w0, B A,"r' eep
d(A)is . — + o T

Henee one root, <3, gives an.'él'l'i‘p?tic paraboloid; the second,
between B and A4, gives a hypérbolic paraboloid; and the third,
> A, gives another elliptie{paraboloid. _

Exceptional cases oceﬁr\here also for special positions of the
point [X, ¥, Z], whéw'one or more of the confocals degenerate.

12-8. Foci of@ Sone or cylinder.

The polar)ef ‘any point P with respect to a cone is a plane
passing tﬁrﬁugh the vertex O, and this is also the polar-plane of
any Pai'r}t on the line OP. The vertex itself is the pole of any
planie; dnd the pole of a plane which does not pass through the

rereex is the vertex.

"The ideas of foci and focal axes in the case of a cone or cylinder
require modification, for when a conc is considered as the limit-
ing case of a hyperboloid of one sheet, say, the tangent-planes
become planes through the vertex. But anly those are considered
as tangent-planes which meet the surface in coincident lines, and
the surface possesses only a single infinity of tangent-planes.
Through an arbitrary line there are no tangent-planes, and

5AG 16
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through a point there is no tangent-cone but. only a pair of
tangent-planes,

In the case of the general quadric the tangent-planes through
a focus envelop a circular cone, and this meets the plane at in-
finity in a conic having double-contact with the circle at infimty.
In the case of a cone or a cylinder there are just two tangent-
planes through a point, and if this peint is a focus these planes
meet the plane at infinity in a pair of lines both touching thes
circle at infinity. A

¢ )

12:61. In the case of a cone there is a proper conic af ity
C, and the tangf:nt -planes are planes through the .Vertux and’
touching this conic. C and the circle at infinity o Have four
comumon tangents which intersect in pairs in m&bomts of which
two are real and two pairs of conjugate nnagmdm,s If Fis one
of these points any point on OF is a foc@ The foci therefore
lie on three pairs of lines through @y énd these are degenerate
focal conics. The pair of tangent- pléues through a focus form 2
circular cylinder of zero radlus»@nd their line of intersection,
OF, is therefore also a focal asis. There are thus only six focal
axes, and not an infinite n‘umber as in the case of the general
quadric. p

Let the equation ¢ of\she cone be

‘ \\x‘{.-’A +y¥ B+ C=o0,

then if the, §ae”[/, m, #] is a focal axis the point at infinity
[4, m, n, 01\15 the pomt of intersection of two commen tangnntb
to the c&mc at 1nhmty

".“'\ w=9, xz/A +y2/!:IJ-z2 C=

§ a:nd the cn‘cle at infinity.

‘,/

The tangential equations of these two conics are
AEE+ Bn*4 C{%=0,
52_}_??‘2_’_(:2:0_

A pair of intersections of common tangents isa dcgenerate conic-
cnvelope of the system

A§%+ Byt 4 CL— M@+ 1) =
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This depenerates when A=4, B or C. Taking A=A we get
(B=A)n*+(C—4) =0,
which represents the two points
o, v(B—A), +4/(d-C), ol

Hence we have a pair of focal axes

y?. =2
=% p_atc-a=®
which are also loci of foci or a degenerate focal conic. O
Two other pairs lic in the other coordinate-plines, viz. ™
22 P Y N
T—= R Rypp——C Y o (ng‘.
Y=% Z-pteD ‘
€
x?. yZ "Q.\
and o, —— 1 J . =p, O
. #=0 g ¢ctB-¢C

p ¥

. . ' + AN
Of these, one pair are real and the others jfgaginary.

12-62. In the case of a cylinder the intérsection with the plane
at infinity is a line-pair through 2 poiat €. Tangent-planes to the
cylinder all pass through C. meC there are two tangents

"4, 7 to 3, and through each of these there are two tangent-planes
to the cylinder. These tangent-planes intersect in four lines,
besides 7 and J, two reala){d two imaginary, passing through C.
All points on these linésare foci and the lines in pairs form de-
generate focal conibs, They are also focal axes since the tangent-
planes through Qn,y’ one of them cut the plane at infinity in ¢
and 7. If 7 and J are the points of contact of 7 and j with £, any
section of sthe’ cylinder by a plane through ] will be a comnic
WhOse‘iioéﬁ 4re the points in which the plane cuts the four focal
axes, ¥Ehese planes are principal planes of the cylinder, per-
p@}lﬁiéular to the direction of the axis C.

12-63. Coufocal.cones and confocal cylinders.

-
Confocal cones—cones having the same focal axes—have a
common vertex, Taking this as origin we find, as 1n 124, the
equation of a confocal system
x2 yﬂ =2
e =0,
antER T

t6-2
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The conics in which these cut the plane at infinity have for
their tangential equation
(A+0NEH (BTN H(C+A) =0,
and therefore form a linear tangential system touching the four
common tangents of the circle at infinity
i 4nP+ {F=o0,
and the conic-envelope : )
AE4Brp+Clt=o. R
Hence all the cones of a confocal system have four\ﬁ};ed
tangent-planes, i.e, the focai-developable in this case.re{:hlces to
four planes, their intersections in pairs being the sisnidcal axes.
12:64. The equation A
i N
AiATBEAT
represents a system of confocal cylmck;r’s. The four foeal axes
are the lines parallel to the axis #fhe cylinder and passing
through the real and imaginary fgci-of the transverse scetion, ie.
x=0, y=++/(B~A) and y=o, x= +/(4—B).
‘The two tangents 7 and j to Q from the point at infinity C on the
axis of the cylinder a.r\e" the vestiges of two other focal axes.

12-7. Conjuga: e'\focal conics.
TLet there he given any rcal proper conic S, say
sz=o0, x¥/4+y*/B=1, with 4> B.

This camybe considered as a degenerate quadric-envelope, its
tangeQ‘E\al equation being

AP+ Bm=p.

¢ 'ﬁ confocal system of quadrics

AP+ Bm*—p 4 A(B +m2 4+ n¥)=0
is then determined, whose point-equation is

x2+y z‘z
A+ B+h A

One focal conic of th.lS system (for A=o0) is the given conic S-
The other real focal conic (for A= — B) is

y=9, 24~ B)—z*/B=1,
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which is a hyperbola or an ellipse according as B is > or <o,
i.e. according as S is an ellipse or a hyperbola. Hence when §'is
given, a second real conic §” is uniquely determined; if one is an
ellipse the other is a hyperbola. If S is a parabola, the confocal
system consists of paraboloids, and S is also a parabola, equal
to the former. Such pairs of conics are called conjugate focal
conics. They lie in orthogonal planes, the real foci of the one
coinciding with vertices of the other,

Since the focal conics form the locus of vertices of circular

o\, Fig. 43

tangent-cone;{', :e\a_ch of the two conics is the locus of vertices of

circular conés"which project the other. The axis of the circular

cone wh\téh 'has its vertex P on the conic S is the tangent to S

at P,y jf F, F are the foci of S, and therefore vertices of 57, the

,,ang‘ié'FPF " is the vertical angle of the cone. If S is either a
\hi'}aerbola or a parabolz, as P moves from the vertex to infinity

along the curve the vertical angle varies from 180° to o, and

therefore takes all possible values. If § is an ellipse, however,

the least value of the angle, which occurs when Pisat the end of

the minor axis, is

2 sin-14/(BJd) = 2 tan=> V/{B/(4- B)}
and is therefore equal to the angle between the asymptotes of the
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hyperbola. Thus an ellipse or a parabola of given dimensions can
be cut out of any circular cone, but in the case of a hyperbola the
asymptotes cannot be inclined at an angle greater than the vertical
angle of the cone.

Ex. 1. If o is the semi-vertical angle of a circular conc and 8 the

angle which a given plane makes with the axis, prove that the eccen-
tricity of the section is cos #/cos o.

Ex. 2. Prove that conjugate focal conics have reciprocal ectehe "
tricities. R ¢ :\

Ex. 3. If the squarc of one of the eccentricities of onc of the focal
conics of a quadric is represented by the cross-ratio (ARCD), show
that the squares of one of the eccentricities of the ophet focal conics
are (BCAD) and (CABD), and that the squarcs of the other eccen-
tricities are respectively (CRAD), (ACBD) and(ACD).

12-8. The foci of a given quadric are fgepalso of any confocal
quadric, since the focal conics belopg %0 the whole confocal
system. The tangent-cones, with afy focus F as vertex, to all the
quadrics are circular and have a gomimon axis, the tangent to the
focal conic at F. N '

It 15 true also that the fo}fﬁl axes of a given quadric are focal
axes of any confocal quadrit. 1f the two planes [/, m, », p] and
[I', m', n', p'] are cqnjﬁgate with regard to each of the quadric-
envelopes AN

AL B+ Cn?—p2=0 and P+m2+n®=0,

~we have \“ All'+ B’ + Cnn’ — pp’ =0

and “\\ I 4imm' +on'=o0.
Thexg’fgre

2
(A+NI 4+ (B4+Xymm' + (C+X)nn’ —pp’ =0,

:'jiie. the two planes are conjugate with respect to the confocal

\ W

quadric

AP+ Bm? 4 Crt—p2 4 (B +m2 4+ n?) =o.
‘Hence if their line of intersection is-a focal axis for one quadric i
is a focal axis also for any quadric of the confocal system.

12-81. We can now prove that the focal axes of a quadric are

. the generating lines of the quadrics of the confocal sysiem.

“Let [ be any generating line of a quadric S of the confocal
system. Then every plane through /is a tangent-planc 10 5, and
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since /s self-conjugate with respect to S, any two planes through
! are conjugate with respect to S. [ is therefore a focal axis.
Conversely, if 7 is not a generating line of any quadric of the
confceal system there are two quadrics S, §” of the system which
touch J, and the tangent-planes «, «’ at the points of contact
A, A" arc orthogonal. Pairs of planes through / conjugate witle
respect to S consist of the tangent-plane « and any other plane
through [; only one such pair, viz. « and ', are orthogonal.
Hence { is not a focal axis; and therefore every focal axis must
be a generating line of some quadric of the system, ¢
On an arbitrary plane there are two focal axes; these are the
lines in which the plane is met by that quadric of the genfocal
system which touches the given plane. 4D
Through a given point there are six focal axes, \zi*z;\ﬁu: gener-
ating lines of the three confocals through the Peint. Of these
focal axes two are rcal and four imaginary, £\ :
The congruence of focal axes is therefpréwsaid to be of class 2
and order 6. O
£x, 1. Prove that the tangent-conesfrom a point Pto the quadrics

of a confocal system have a commaitaystem of principal planes, and
form a system of confocal cones, %

Ex. z. Show that the six,focal_’axes through any peint £ are the
focal axcs of the tangent-{s@zxcs from P to the quadrics.

12-9. Deformalglk\ﬁ;ﬁmework of generating lines of a
quadric. )

1f the generatifig lines of a quadric are considered as thin wires
pivoted at heir points of intersection, the framework is de-
formablpﬁ > '
Cap’s)'cher the hyperboloid of one sheet
A a%jat+ bt — 22t =1,
\ﬁ teedom-equations in terms of two parameters A, u are
yla=Ap+1,
ylb=A—p,
zle=Apu—1,
w=A+ i,

% This was discovered accidentally in 1873 by 0. Henrici when he set
his students at University College, London, to construct 2 model of a hyper-
boloid of one sheet by tying together a series of thin rods.
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and the generating lines of the two systems are represented by

A=const. and p=const. Thus these values of %, y, 2, w are the

homogeneous coordinates of the peint P of interscetion of the
© generators A and w. Let P’ be another point on the generator A,

and let 32" be the generator of the other system through P°; then
_ the coordinates of P’ are given by '

& fa=Ae" 41, etc,

We find then ¢

PP (a1 4N O 1) (O 0 )

Keeping A, s, &' fixed we may vary a, b, ¢ in such a way {liat PP’

remains constant. If a, b, ¢ are changed into a’, b’ g% PP will

remain unaltered if D

_ atd?=a'?+c'2, and a2 — bt = g2 B0 —
hence if @2 =a%+ k&, then ¢?=c*—% and p3A=0"+ 4.

Hence without altering the distancés, Between intersections
along any generator the hyperbolordean be transformed con-
tinuously into the hyperboloid )«

X2 }"2:'}‘. SR
_ a2+k+§.§§]"_fe+—cz+f_z=
which is confocal with(the given hyperboloid. When Je=c? the
framework ﬂatter{duﬁ ini the plane x=o and the lines envelop

. ; N\
the focal ellipse, . .

\ S 2f(a? +€2) + y3(B2+ ) =1;
and (assummg a>b) when k= —b? it flattens out in the plane
y=o<n’:§‘the lines envelap the focal hyperbola

O  a%f(a— b — (b + ) = 1.

)

I,

™

<\1}:"12-91. In the case of the hyperbolic paraboloid

xfat —y2 (bt = 22fc

the freedom-equations are

xfa=A+p,
J.’/b‘:)_t—.u,
2fc =22,

A=const. and p=const. representing the two systems of gener-
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ators. The distance between the two points P=[A, &] and
P'=TA, p'] is given by

PP=(a?+ b+ 4¢2A%) (n— p')%
Keeping ), g, u' constant and changing a, b, ¢ into &', &', ¢’ the
distance PP’ is unaltered if

ad+bB=at " c=¢.

Putting a'?=a?+k we have 52=0*—Fk and on changing the
origin we obtain the confocal paraboloid

a9t 2% R O\
a2+k+—b‘3+k_ v AN
12.95. EXAMPLES. _ A\

S

1. Show that the foci of any plane section of a sphefold are the
points of contact of the two spheres which can be{drawn -having
ring-contact with the surface and touching thexplane,

2. Find the locus of intersection of thré@mutually perpen-
dicular planes which touch respectivelyf thtee confocal central
quadrics. W

Ans. A sphere. . ~f~’:;

3. Show that the focal conids are the loci of umbilics of the
confocal system. o

4. Show that all thetermals through a given point to the
guadrics of a confock{%jfstem are generators of the same quadric
cone, )

5. Show tha‘i‘i‘tlﬁe Jocus of points on confocal central quadrics
at which .t]{é'\formals are parallel is a rectangular hyperbola of
which oébésymptote is parallel to the normals.

6. Show that the normals to cenfocal quadrics at points the

”tan’}jtéht—planes at which pass through a fixed line generate a -
Nhyperbolic paraboloid.

7. Prove that the axes of a tangent-cone to 2 quadric are the

normals to the three confocals which pass through the point.

Dzr. Corresponding points on two ellipsoids whose semi-axes
‘are a, b, ¢ and &', &', ¢’ are points whose coordinates satisfy the
equations xja=x'/d’, y/b=y'[t', gle=¥[c; and similarly for
points on two hyperboloids of the same species.
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8. Prove Ivory’s Theorem: that the distance between points
P and O’ on two confocal quadrics is equal to the distance be-
tween the corresponding points P’ and Q.

9. If P, O are two points on an ellipsoid, and 7', O are the
_corresponding points on a confocal ellipsoid, prove that

— Q= 0Pt -0

ro. If P and () lie on one generator of a hyperboloid and
P, ) are the corresponding points of another hyperholmd‘ wof
the same species, show that P" and Q' lie on. one generatot\, and,
if the hyperboloids are confocal, PO = P’Q’

\ "x
11. Show thatan umbilic on one ellipsoid is thecorrcspondlng

point of an umbilic on a confocal ellipsoid. O

N

2. A quadnc has perpendicular dirgettices «, S corre-
spanding to foci 4, B respectively, Shaw that another quadric,
" with the same planes of circular settion, has direcirices «, f
corresponding to foci B and 4 respectwely

. ® {Math. Trip. II, 1913.)

Ans. If the given quadrs;c is ax®+-by?4cx*=1, with foci

[X,0,Z] and [X', V", Qi\the other quadrlc is

ax?+by? + ¢z —I—b\if(w—Xj?+y +(z A
- Feflr— X+ (= VP 2

~



CHAPTER XIII
I,INEAR SYSTEMS OF QUADRICS

131, If S=o0 and S =0 are the point-equations of two
quadrics, the equation

S-A8=0

represents for all values of A a quadric passing through all the
points common to S and S’ This is called a linear one-paranéter
system or pencil of quadric loci, or a point-system. O

13-11, 'The points common to two quadrics forfa @ curve
which has the property that it is cut by an arbitraryplane in four
points. For a plane cuts the quadrics in two eopics, and these
intersect in four points. This curve, the basecurve of the pencil,
is therefore of the fourth order. It mll'\be considered in more
detail in the following chapter. = A&

1312. Through any poini tkngipaEses just one quadric of the
system, for when the coordinatesiof the point are substituted in
. the equation we have a lineiriequation to determine A.

1313, An arbitrary line'is cut by the quadrics in pairs of points
which form an involutten. For if P is any point on the line there
is a unique quadgi%of the system through P and this cuts the
line again in & 'whique point P’. Thus to P corresponds P’
uniquely, andyif the same way to P corresponds P. Hence the
points ape{c\hnected by a symmetrical (1, ¥) correspondence.

13'\1% “The involution has-two double-points, and these are
thépoints of contact of the quadrics of the system which touch
'“\'th\e line. Hence in general there are two guadrics of the system
which touch a given line. These may be real or jmaginary. If they
should be coincident the involution on the line is degenerate;
the double-point D then corresponds to every point on the line
and therefore D must be a point on the base-curve. Hence if the
line cuts the base-curve in a point D there is just one quadric of
the system which. touches the line, and its point of contact is D
If the line cuts the base-curve in two distinct points [, D, a
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quadric of the system can be determined to pass through another
point P of the line DIY, and DIV is thus a generating line of this
quadric; if D and D’ coincide, so that DD’ is a tangent to the
base-curve, the line touches every quadric of the system at D,
and there is, moreover, a quadric of the system having the line
as a generator.

13-15. An arbitrary plane cuts the quadrics in a system ofs,
conics (pencil) which pass through the four fixed points A, By
C, D in which the plane cuts the base-curve, In this peil’pf
conics there are three line-pairs, viz. 4D, BC ' BD,CA ;GD, AB,
and the plane is a tangent-plane to the quadrics of hich these
are the sections. Hence in general there are three diindrics of the

- system which touch a given plane. Special cagseS(Inay arise when
coincidences occur among the four points 4,‘8, C, D,

- 1816, Tiwo quadrics have in general q dipbque common self-polar
tetrahedron. If the point [X,, ¥, Z, WA has the same polar-planc ‘
with regard to the two quadrics the Iwo equations

538,88 N8 as
ax ezt oy =o
88 (S as Ay
are identical. Hpqé

aX+hY +20pW  hXABY+fZ+qW

CXANYGEZ A p W WX ANV 24 g W
N e
,”\-]‘E:(jﬁﬁ;ing each of these to #, we have the four equations
N @) X () V(g 1) 2+ (p 1) Wm0, et
and eliminating X, ¥, Z, W,

a—td' h—th' gt p—ip' |=o.
h—th' b—th ftf’ getg
\eg—tg fif' c—te r—p
P q-tg v —w d—td
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This is an cquation of the fourth degree in 7. Each root then
determines one set of valucs of [X, Y, Z, W], and we have four
points forming a tetrzhedron.

When this tetrahedron is taken as the tetrahedron of reference
the equation of each quadric reduces to the form

ax?+by? + ez + dwi=o.

Special cases may arise when there are equalities among the ,
roots, but we shall consider at present only the general case.

The equation of the system of quadrics can now be writt€iy

{ax® + by +c3*+ dw2)—h(a’x2—'rb’y2+c'zz+d’wg)——jc’xz\
Hence the same tetrahedron is self-polar with respc,(;{‘iif& all the
quadrics of the system. _ R4

1317, The discriminant of this equation i
(@—2a') (-2} (e =AY (")
and if this vanishes the quadric beg:gffles a cone. Hence in a
pencil of quadrics there are four cgr;és;'and their vertices are the
vertices of the common self-polar getrahedron.

Ex. When the vertices of thefour cones are real and distinct, show
that the four cones are either 2l real or two real and two virtual.

132, If £=0 anqlizz\-:o are the tangential equations of two
quadrics, the equation
TN X -XE'=o0
represents adyetem of quadrics which touch all the planes which
are tangedPyto both X and X', This is called a finear tangential
one-pgi{éﬁ}eier system or pencil of quadric-envelopes.

’1’3;\21. The asscmblagé of common tangent-planes forms a

~ ﬁgili‘e (one-dimensional envelope) which is dual to 2 curve in

\_bpace (one-dimensional locus of points). Itis called, for a reason

that will appear later, a developable. It is to be distinguished from

a surface, which is a two-dimensional envelope and is dual to a

surface as a two-dimensional locus. The tangent-developable of

two quadrics may in certain cases reduce to two COnes, as in the
case of two spheres, and a cone is a particular case of a de- -

velopable. Reciprocally the curve of intersection of two quadrics

may reduce to two conics (this also occurs in the case of two
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spheres), and we have already seen that a quadric cone is dual

to 2 conic. The tangent-developable of two quadrics is said to be

of the fourth class since therc are four tangent-planes which pass

through an arbitrary peint, the common tangent-planes of the

tangent-cones to the two quadrics with the givcn point as vertex,

Developables will be treated at gredter length in the following
- chapter. :

. 1322, Theorems, dual to these for a point-system, hold ferd
the tangential system. Thus: there is one and only one g;mdrm af
the system which touches a given plane. _ PR

18-28. The pairs of tangent-planes through a given lgcare in
tnvolution. The double-planes of the involution. ‘bcing the
tangent-planes to the quadrics which touch thel given line it
follows as for the point-system that there areNgip-quadrics of the
system which touch a given line. NY;

18-24. With an arbitrary point P as yefteX there is a system of
tangent-cones to the quadrics, all tgwshing four fixed planes
@, B, v, 8 the tangent-planes of,the” developable which pass
through P. Three of these conea degeneratc to line-pairs, viz
the intersections of the planes a8, By; B8, you; v5, 2f; and P is
then a point on the corresponding quadrics. Hence in general
there are three guadmcs oﬁtke tangential system which pass through
a given point. \\ '~

13:25. When ghe two quadrics X, X' are referred to their
cominon self-polar tetrahedron their mnbential equations are

O E =AE* + By* +C? + Dt =o,
OY S=de+ B+ P+ Dwt=o,
and_ the quadric Z—AZ'=0 will degenerate to a conic for four
vames of A. Thus in a tangential system of quadrics there are four
“Which degenerate to conics, and their planes are the faces of the
common self-polar fetrahedron,

13-3. An example of a tangential system of quadrics is a con-
focal system. The above properties are then verified. 'I'he four
“degenerate quadrics are the three focal conics and the circle at -
infinity. : .

The orthogonal properties of the confocal system can be in-
terpreted in the general tangential system, taking one of the four
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conics as absolute. Thus, considering the two quadrics which
touch a given line, their tangent-plames at the points of contact
are conjugate with regard to every quadric of the system, and
therefore with regard to each of the four conics.

Considering the three quadrics through a point P: o, B, », 3
being the tangent-planes through P to the tangent-developable,
the tangent-planes at P to the three quadrics are the planes
£, , { containing the line-pairs (a3}, (By); (88), (ve); {8, ().
These three planes are mutually conjugate with regard to any
quadric which touches the four planes o, 8,y, &; i.c. with regard )\
to every quadric of the system and therefore in particular ¢om- -
jugate with respect to each of the four conics. A\ )

In a confocal system therefore the tangent-planes ;o‘j'fhe three
quadrics which pass through any point P are mutwalorthogonal
and conjugate with respect to every quadric of the SyStem. '

18:31. Lines of curvature. O

A given gquadric of the system is cit by the other quadrics
in curves, two passing through each poit and therefore forming
a nctwork on the surface. If £39 ‘the tangent-plane to the
given quadric at the point Py the tangents to the two curves
through # are the lines (fq}aﬁd (¢0), while {«8) and (By) are the
generators through P of.the given quadric. These two pairs are
harmonic, In the ¢ féca’l system (£7) and (£{) are also at right
angles and therefore the two systems of curves cut orthogonally;
also (£4) and (5;’)\'11& mutually polars with respect to the quadric.

et P’ be a point on the curve of intersection of the quadric with
7, very neandd P, and let £ be the tangent-plane at P". Then the
line (fg;}%é’ the polar of PP and ultimately coincides with (£0)
whegR™> P, The line (5{) is the normal at P, and the plane
sfiich contains both P and P’ is uitimately normal to (££') and

ibbrefore contains the normals at both P and P'. Hence the
normals at P and P’ ultimately intersect and the curve of inter-
section is a line of curvature. Ilence the quadrics of a confocal
system sntersect in lines of curvature.

13-82. The section of a quadric by a plane very near to the
tangent-plane at a point P is a conic, and the limiting form of the
section in the neighbourhood of P when the plane becomes the
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tangent-plane is called the indicatrix at P. Its asymptotes are
the generators through P, and its principal axes are the bisectors
of the angles between the generators. At an elliptic point the
indicatrix is the limiting form of an ellipse, the asymptotes and
therefore the generators through the point being imaginary,
A line of curvature has thus the property that the tangent at any
point is one of the principal axes of the indicatrix at the point.
At an umbilic the indicatrix is a point-circle and the directiosh
of the lines of curvature appear to be indeterminare aThe
umbilics are in fact exceptional points. The four rcal uhobifics
of the ellipsoid x%/a®+ y?/B% + 2%/t =1, where a > # = o, ie on the
plane y=o, and there is no other quadric of the syficih through
one of these umbilics except the double-plane #i=>0. The inter-
section of this plane with the ellipsoid passes'ehrough the four
umbilics and is the only real line of cusyature which passes
through them. But the tangent-plane 4t the umbilic ¥/ cuts the
surface in two imaginary lines UH MUK, where £, K are points
on the circle at infinity, hence these Tihes are isotropic. Any plane
UHT through UH is a tangentsplanc, and the normal is the line
joining U to the pole of H7 With respect to Q. But this point lies
on the tangent to {2 at H. “Hence the normals at points on U
~ all lie in one plane, theisotropic plane through U touching Q at
H. Similarly the pgrmals at points of I/K all lie in the isotropic
plane through & touching 2 at K. 'These two lines arc therefore
lines of curvasure. In addition to the real lines of curvauure,
which are tliﬁ\ curves of intersection of the quadric with its con-
focals, :th;ghe are therefore eight imaginary lines of curvature, the
geng%tors through the umbilics, each passing through one
abé,glute point and three umbilics (cf. 10-71). These lines of
. (tutvature have the special property that the normals at all points
A lic in one plane; these planes are isotropic planes and arc at the
same time tangent-planes and normal plancs.

13-33. The lines of curvature on an ellipsoid resemble con-
focal conics, the umbilics taking the place of foci. It can be
shown, in fact, that if the lines of curvature are projected from
the point at infinity on one of the axes (parallel projection) on t0
a plane of circular section which is not parallel to this axis the
projections form a system of confocal conics,
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Consider the eliipsoid
S=at/a? 4y 0+ 22t —wi=0 ... (1)
and its intersections with the confecal si/stem
2 2 =2 )
DTE(IZL—‘)\+J52‘L—}\+E.§.~_A_W2=O° ...... {2}
Tzking the point C'=Jo, o, 1, 0] as centre of projection we find
the equations of a projecting cone (cylinder) by eliminating & . {\
between (1) and (2): . I \
2lgi—¢ Hhr—c ¢\
AS— (- U= 'ii_z((aa —)t)) 2;,"2'((5,2 —)1)) —w'=0, ' O
R :‘3‘(3)
The intersections of this system of cylinders with the plane z=o
thus form a linear tangential system of conics, antktherefore the
cylinders (1) have four common tan-gent-plan% Jwhich intersect
in three pairs of edges through C. For X=g% 4? or %, U de-
generates to one of the focal conics, Ui ete., and as A —co it
degenerates to the circle at infinity O JFor A=a? the cylinder
degenerates as an envelope to twoupgrallel straight lines, which
form a pair of common chords ef'the focal conic U, in x=o0 and
the scetion of the ellipsaid S\By this plane, and therefore pass
through pairs of umbilicg:_Fhese are two of the lines of inter-
section or edges of the(cptnmon tangent-planes. Similarly for
A=52%, As X —o0 we gét'the third pair of edges which form a pair
of common chord$J¥, J]’ of the circle at infinity with the conic
at infinity on th&-€llipsoid. .

Hence a plagie through one of the other common chords, say
I], ie. aplanc of circular section not parallel to the axis of the
cylinglqrs\, will cut the four common tangent-planes in two pairs
of Jines passing through 7 and J, and the cylinders in a system
Bfieonics touching these four lines and therefore forming a con-

\focal system. T'he foci of the system are the intersections of the
plane with the pairs of parallel edges through C, and are there-
fore the projections of the umbilics.

This may be proved also as follows, The central planes of real
circular sections of the ellipsoid are 2= +x tanf, where

crat—bnd
tanf=- (b—a_~_—€2) .

[74

5AC Ty
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Hence projecting from the plane of xy on to the plane z=ux tané
with the axis of z as axis of '

projection, the equations of z Plzyzl
transformation are 2 l_ T'_xz’
v=a'cost, y=y". P
The equations (3) then be- r T
come y ol b
= () g
a*(a? =) B*{a®— ¢?) r - n ’.\:\
b2_,_{:2 F < ,\ “
L 2. 44 \/-
Y Re—y T

’ A )
1.e. FoATRAT B oY
which represents a system of confocal ell'ugses and hyperbolas,

13-34, Lines of curvature of a cong'or’a cylinder.

A cone or cylinder is a specialisedt uadric locus, and only 4
one-way envelope of planes;.gﬂiallsf', a conic is a specialised
quadric envelope, and only a‘'eic-way locus of points,

Instead of a developable, as the assemblage of common
tangent-planes of a cong“and the circle at infinity, we obtain just
four imaginary planes'through the vertex of the conc. If the
point-equation of<the cone is 4%/4 +y*/B +2%/C=o, the vertex
being the originyits tangential cquations are

NV w=0, 48+ Bp*+Cl¥ =0,
and thg\ig;i}cnle at infinity is

.\o§_~ . §2+,q2+ C2=0_
Theh the equations
~\‘ > 3

s:”' w=0, A§2+BT]2+C€2~A(£2+1]2+€‘3)=0
' represent a system of cones touching the four common tangent-

planes, and we can call this a system of confocal cones. The
point-cquation is
: %2 2 22

Py Wl W R oI S

 If A> B> C the cone is real if either 4> A> B or B> 2> C, and

through any point there pass just two real cones of the syster,
and these cut orthogonally. A triple orthogonal system can then
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‘be obtained by adjoining to this system the system of spheres
with eommon centre at the vertex. The lines of intersection of
pairs of cones (generating lines) and of a cone with a sphere then
form the lines of curvature. For a cylinder the lines of curvature
are the generators and the transverse plane sections,

13:35. The curve of intersection of a cone with a sphere
whose centre is at the vertex is called a sphero-conic. These
curves arc also of course lines of curvature on the sphere. Lines ~
of curvature on a sphere, however, are really indeterminate; any
curve drawn on a sphere has the property that normals at coné \J)
secutive points intersect, since all the normals to a sphere pass

~

through the centre, N

13-36. 'The system of sphero-conics on a given sphefeformed
by the intersections with a system of confocal congs, have, how-
ever, in a special sense the properties of lines of edsvature. They
form, in fact, a concrete representation qf@@nfncal conics in
elliptic plane geometry, in which the circula? points or absolute
are replaced by a virtual proper conic;'Tl‘rl’ls if x, ¥, = are homo-
geneous point-coordinates in a plahe, and & %, { the corre-
sponding line-coordinates, the abgolute may be represented by
the point-equation #?+3%+22=0 and the line-equation

§%2+§2=o.
Then the equation | L\
-45".3\'—‘!%31?2-{-052—?t(§2+n2+Z"}=o

represents a ;y{tem of conic-envelopes touching the four com-
mon tanggﬁk"'of Ag+ B2+ C{2=o0 and £+52+{%=o0. _The
foci are fhe intersections of these tangents. A sphero-conic or
non-edelidean conic has ope pair of real and two pairs of
imagihary foci. In non-euclidean geometry the ‘‘distance i
Degwveen two points P, O is defined as 37 log(PQ, XY), where
{(PQ, XY) denotes the cross-ratio (defined projectively) of the
two points P, O and the points X, ¥ in which PQ cuts the ab-
solute. This is an cxtension of the well-known expression for the
angle between two lines referred to the two tangents from the
vertex to the absolute {or in particular the circular points). With

this definition of distance we find that the sum (or difference) of
17-2
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the distances of any point on a non-euclidean conic from a pair of
foci is constant. For a sphero-conic this means that the sum (or
difference) of the angles between any generator of a cone and a pawr
of focal lines is constant.

Let the equation of the cone be

2 F
32'%_2_%2 =0 (a>bh).
The confocal system is .
x? ¥ x2 R,
AR T EA T O
and the real focal lines are found by putting h;f{?i vit.
x? &t \\

YO T A

e, (&=, o, +(& +bg\}1

Let [A, g, v] be the direction- coqmes af any generator, and 6, &
the angles which it makes w 1th the“mo focal Tines, T'hen

X2+ b — V%z_O M pttvi=1,
and
A 3 2 o o2 % 23 (B2 o)
cosfl= (@ =5+ »(b +C) . cosﬁ’zM Lilia il: C)
a2+ 62{)!\ (a'z -+ (;2)2'
Eliminating w we\have
& ;cg(az PN+ a2 (b4 %) P =a P
Write '\~ A{a?~b%)t =g coso,
then\ v(B2+ )i =csing;
wrlte also  a=(a+cicosy, c=(a?+cMisiny.
~ “>f'ht,n cosf =cosd cosiy+sing sing=cos{p — ),
cost’ = cos$ cosyi—sing sinh = cos (4 +¥),
whence either 8+ or §—§' =2knm + 2¢6, a constant angle.
There is a similar property for the lines of curvaturc on an
ellipsoid: viz. the sum or difference of the geodesic distances
from 2 pair of umbilics to any point on a given linc of curvaturé

18 constant (sec Salmon, Aralytic geometry of three dimensions,
7th.ed. § 400). '
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13-41. The polar of a point P=[x,, 3y, 2, @,] with respect to
a quadric of a linear point-system is
P-AP =y,
where J*=o represents the polar of P with respect to the quadric
S=o0, and P’'=o that with respect to 8'=o. Hence the polars
of a given point all pass through one line 1.
There is one quadric S of the system which passes through
P,. Let « be the tangent-plane to S; at P;. Then there are two

other quadrics S, and S; which touch «; let Py and Py be theiry

points of contact. Then the polar of P, with respect to .S ig-e:
The polar of P, with respect to .S, is also « and it passes tbggndgh
P,, therefore the polar of P, with respect to S, passeg-through
P,. Similarly the polar of P, with respect to S, passéﬁ"through
P,. But the polar of P; with respect to Sy passes through both
P, and P,. Therefore the polars of P, with respgeto all quadrics
of the system pass through both P, and Py, £,F; 15 therefore the
line through which the polar planes of Pyall pass.

13-42. To cvery point P there ca}fﬁeaﬁoﬂds in general one Iine
such that the polar planes of P wiih respect to all the quadrics of
the system pass through I, and. the* whole assemblage of such lines 1
form a quadratic complex I I passes through a fixed point
Q=[X, Y, Z W], P ﬂs‘é@’n a fixed line, the line which corre-

t

sponds to . We hawe then
\“ ax, X+ ... =0,
D> axn, X+ .. =9

:"\1.

and, [x, y\\ﬁ, w] being any point on

O ax;x+ ... =0,

\V axxt...=0 .

Eliminating %, 1, 21, % between these four equations we obtain
{ax by ¢z dw |=0,
! ax by cz dw

LaX bY oZ AW

aX VY JdZ dW

Q"
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which represents a quadric cone through [X, ¥, Z, I¥]. Hence
the complex of lines is of class 2, or it is a quadratic complex.
In a given plane there are two lines of the complex through any
point, hence all the lines of the complex which lie in a given
plane envelop a conic. :

13-43. The locus of points which correspond to lines of the com-
plex which lie in a given plane is a cubic curve. Q)
Let P=[X, ¥, Z, W]and lct the given plane be o= [/, m,np},
Then the condition that the line of intersection of D

aXx +bYy +cZz +dWw =0

and a Xx+b Vy+c'Za+dWuw=0

7'\
should lie in the plane _
' fx+my+nz+pw=qi\\.’

is that the matrix [aX &Y ¢Z aw"
aX VY ZVdW
I m \n p
should be of rank 2. Hent:.t?:foM
Hed' — ' dYZW -+l —d' ) WX+ pla’ —a'e) X7 =0
and \\i’
micd — QYW +n(dy —d'BYWY +p(be' —b'c) YZ=0.
The locus {5 therefore the intersection of these two quadrics
which h:\v'e\the generating line Z=o=W in common, and this
locus.{s;a’cu_bic curve.
',~i,§-431. Since the polars of P with respect to § and S’ inter-
“\sect on the plane «, « is the polar plane of P with respect to oné
N\ quadric of the system S—AS’. That is the locus of poles of a fixed
" plane with respect fo the quadrics of the system is this cubic curee.
This may be shown also directly as follows. If P=[X, ¥, Z, W]
is the pole of the plane {/, m, #, p] with respect to S A8, then
(a=2a) X/I= (b)Y [m=(c— A"} Z[n=(d—~ ) Wip-
The locus of Pis therefore represented by the freedom-equations

a=I(b—-Ab"Y(c— A"} (d—Ad"), etc.
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Ex. 1, Show that the polar quadratic complex of the system
(ax®+ b2+ e +dw?j + A (@' &+ L'+ d wf) =0
is represented by any one of the equations

Porbes _  PoePn _ Posthz
(da’y(be') ™ (db') (ca’) (dc7) (ab')’
whete (be') stands for be’ —¥'¢, ete.
Iy, 2. Prove that the polar lines of the line

aXx+bYy+eZz+dWew=o, )
& Xo+¥ Yy +c Zz+d Ww=0 \
with respect to the system )
{ax®+ ... )+A (a’xz—}-....):o ."’}\\
generate the quadric WO
P \\d
Z(6") (ad) (2 X W+ a0 Y{ f=0.

13-44. Polar of a fixed line with)fespect to a pencil of
quadrics. R .

If { is any line of the complexft’fle polar planes of all paints on
it with respect to all the quadties of the system pass through the
corresponding point P. &énce the polar lines of / with respect
to all the quadrics of €h¢ system are concurrent in P.

If /is an arbitr:}ﬁr\\‘ine and (x,), (%), two points upon it, the
polar planes of.{&) and (x;) are Py+AP =0 and P,+AP,) =o0.
Eliminating A\%e have P,P,’—P/'P,=c which represents a
quadric. Jdénce the polar lines of an arbitrary fixed line generate
a reguluss/The other regulus of this quadric consists of those
lines\df the polar complex which correspond to points on Z

_ (1345, The polar complex is an example of the fetrahedral
\_gomplex, which is the complex of lines which are cut by four
fixed arbitrary planes in a constant cross-ratio. The lines of the
polar complex are in fact cut by the faces of the tetrahedron of
reference in a constant cross-ratio.
A line of the complex is represented by

aXx +bYy +cZz +dWw =0,
@ Xx+b'Yy+Zz+d'Ww=o0.
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We obtain freedom-equations by taking the two points of
reference on =0 and w=o0; thus

x={b"YYZ +t(bd) Y IV

y={ca)ZX +t(da) WX

13

z=(ab") XY
w= t(ab)\ XY
where (b¢’) stands for be’ —b'e, ete. Q"

'The line cuts the planes x=0, y=0, 2=0, w=o0 respectively
where the parameter £ has the values )

Z '\
_NHZ o fed)Z N\
(bdY W’ {(da") W’ A O
The cross-ratio &
(b (@3

by, Bl =h/th= o 0
(1 23 3 4) 1/ b2 (bd)(c&}
which is independent of X, ¥, Z, W. { &

13-5. The polar propertics of the tangential system follow
reciprocally. Thus if « is an arbifrary fixed plane, its peles with
respect to the quadrics of a gdiigential system lie on one line /,
and the assemblage of suelilines, when the plane « is varied,
form a tetrahedral complex. With certain exceptions, to every
plane corresponds ofi¢)line of the complex, and wice versa. If
the plane « is a plane of the tangent-developable, so that it
touches every ,quadric of the system, the points of contact are its
poles and theSe'lie on one line, which is a generating line of the
developalile.” If o is one of the principal planes, its poles all
coinqid\’f:,\zind any line through a vertex of the fundamental
tet;q‘h}dron belongs to the complex. If « passes through a vertex
Xjats poles lie in the opposite face and [ lies in this face,

\\3 “"The assemblage of polar planes of a fixed point is a cubic de-
velopable, and this is also the assemblage of planes which corre-
spond to lines of the polar complex which pass through the
given point.

The polars of a fixed line I with rcspect to the quadrics of 2
tangential system generate one regulus of a quadric; the other
regulus of this quadric consists of the lines of the polar com-
plex which correspond to planes through Z,
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Ex, Show that the polar complex of the confocal system

At L Py

is represented by
@*Pon Py + b Poz Par + € Doy Pra =0

1861, A quadric is in general completely determined by nine
points, provided these nine points do not lie on a quartic curve
which is the intersection of two quadrics. If eight points are
given, the system has one degree of freedom and the quadric.i i
completely determined by one other point. Let S; and S; be t\‘vo
quadrics through the eight points. Then every quadric 6f'the
system &, +ASy=o0 passcs through the eight points, add“since A
can be determined so that this may represent a gl\vcn quadric

through the eight points, the general linear systemis the system
of quadrics through eight fixed points. All tle quadrics which .
pass through elght arbitrary points hav\e /2 quartic curve in
commeon, A '

NN

13-62. Eight points do not, howei'er", alw ays determine a onc-
parameter system. For any three \quadrics Sy, S, S, have eight
points in common, and then? dny quadric of the two-parameter

system lsk+?132+p53=0

passes through thcsg"éi’gilt points.” Eight points which form the
basis of a two-patameter system are constituted in a particular
way. The two-eg'iafameter systemn requires only seven points to
determine tﬁ{ufor any seven of the base-points being taken a
quadrlc\f\the system is determined by two other points. All the
quadpits will then pass also through the ecighth point. Hence
all c_)uadrus which pass through seven given puinis will pass alse
ihrougk an eighth fixed point. A group of eight points having this
gharacter is called a set of eight associated poinis.

Ex. Show that the vertices of any hexabedron form eight
associated points.

When the eight points are divided into two sets of four, each set
forms a tetrahedron self-polar with respect to one and the same
quadric,

}
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Thus the system

A(y2+aw)+ p(zx+ yw) +v(xy + zw)=0
passes through the eight points [1, 0, 0, 0], [0,1,0,0],[0,0,1,0],
lo,0,0,1),[~1,1,1,1],[1, —L, T, 1], [t, 1, =1, 1], [1, 1,1, — ).
“The first four and also the last four forfn self-polar tetrahedra
with respect to x2-+ %+ 2?+w?=o0. For the general proof of this
theorem see 15212, Ex, 2.

137. As a particular case of the theorem 13431 the locus \
of centres of a linear point-system of quadrics is a cubic curnve,
This cuts the plane at infinity in three points. Hence the gystem
in general contains three paraboloids. This appears alsg other-
wise, since there are three quadrics of the system which touch
the plane at infinity. The directions of the axed\of the three
parabolas form a set of conjugate directions for ¢ach quadric of
the system. AN

The locus of centres of a linear tangenfial system of quadrics
is a straight line; but reduces to a fixedhpoint if (as in a confocal
system) the plane at infinity is a fage-of the common sclf-polar
tetrahedron, _ R \\

The condition for a rectangtilir hyperboloid (=0 being the
plane at infinity) is (a+&+% c)—A(@’ +b +¢)=o. Hence there
is in general one rectangular hyperboloid in alinear point-system.
If there are two,-th&{m’z# bre=oand ' + & +¢ =o, and every
quadric of the system is a.rectangular hyperboloid. As the con-

. dition e+ b—g—,r:%d is linear in the coefficients, a rectangular
hyperboloighisin general determined by eight points. But if the
cight poifitt’ form an associated group every quadric through
sévquhhem will pass through the eighth. Al rectangular kyper-
bpl\dz'ds which pass through seven given potnts form a one-parameter

“spsten and have in common a guartic curve, If six points are given
there is a two-parameter system of rectangular hyperboloids,
which is determined when three such hyperboloids are given.
But these three intersect in eight points, which are common to
all. Hence all rectangular hyperboloids which pass through sL¥
given points form a bundle and pass through two other fixed ponis.

The condition for an orthogenal hyperboloid is

(B=M"Y(e— M)+ (c—Ac) (a—Xa')+ (a—Aa') (- No') =0
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Ience there are in general two orthogonal hyperboloids in a

linear system. If there are three, then bc+ca+ ab=o,

Vo roa rab =0, b +bctea’ +latab’ +a'b=o, and every

quadric is an orthogonal hyperboloid. This requires
a'la=¥[b=ce,

and the quadrics are then homothetic.

13-8. Classification of linear systems.
A linear point-system of quadrics, which is determined
by two given quadrics, may be specialiscd in various ways,

- € N\
according to the nature of the base-curve. £

13-81. [r1:r]*. In the general case the curve of intefscction

is a quartic curve without singularities. The two quadsies have a

unique common self-polar tetrahedron and whqnft}ﬁs is taken

as tetrahedron of reference the equation of ¢aghivquadric is of
the form - ax2+by2+czz+dw2=,e;\\:

Further, by a suitable choice of unit;pp\iht we may obtain as

canonical equations O

SEax2+by24:qé?¥dw2=o,

S'=x2+y° +:5§""-‘f— w?=o0,

The four cones of the S}stem 'S —\S" =0 are determined by the

equation (G_AT(}_ X (C__)‘) (d—X=o.

There are three s}e\iél cases when equalities occur among the

roots, o “

13-811. [(\J}I):[I]. If a=b two of the cones coincide and de-
generate 4o &#o planes, so that the base-curve reduces to the two
conicganwhich these planes cut all the quadrics. If the planes
are gi=>0, v=0, the equation of the system is of the form

~O° - S—huew=o0.

\The planes of the two conics intersect in a line which cuts Sin
two points 4, B which are points en each of the conics. (We
assume that 4B is not a generating line of S.) The two conics
therefore intersect in two points. The base-curve thus consists
of two comics whick intersect in tewo points, and any two quadrics
of the system have double-contact at A and B.

# These symbols are explained later (13°86).
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Ex. 1. Show that the system .S —Aup=0 has'a single infinity of
polar tetrahedra and two proper cones.

Fx. 2. If two conics intersect in two points, show that there are
two centres from which one of the conics can be projected into the
other.

13-812. [(x1x)1]. If a=b=c the two plancs # and v coincide
and the base-curve becomes a double-conic. The equation of the
systern is of the form AL

S—Aif=o. .
Any two quadrics of the system have ring-contact aldng’this
conic. An arbitrary plane cuts the system in a systemiof conics
having double-contact at the points in which the glahe cuts the
double-conic. There is just one proper cone nkthe system and
this is a tangent-cone to every quadric of thégystem. There are
oo ? self-polar tetrahedra. WO

An examplé of a system of this type ié@system of homothetic
and concentric quadrics, in which cglsf{:}_he double-conic is in the
plane at infinity and the common tamizent-cone is the asymptotic
cone. Two concentric sPhcrcsﬁa}c ring-contact along the circle
at infinity. - &N

13813, [(11)(11)]. Af @=b and c—d, the base-curve is the
intersection of two pairs of planes, i.e. a skew quadrilateral. 'The
equation of the s;e{mﬁ can be written in the form

N\

K xy—Azw=o0.

All the qua&rics of the system have four common generating
lines, ﬁw%f each system, say a, & of the one system and &, &
of thesther, The planes aa’, ab’, ba’, bb’ are tangent-planes to ai_l,
apdhahy two quadrics of the system have guadruple contact. This

oaystem is self-dual and forms also a lincar tangential system i

NN
h

3

‘Which the tangent-developable reduces to four planes.

13-814, [(1111)]. The case a=b=c=d is trivial, the two
quadrics being coincident. '

13-82. [211]. When the quadrics have simple contact at a point
O every plane through O cuts the quadrics in conics which touch
at O and therefore meets the curve of intersection in two coill-
cident points at Q. O is therefore a double-point on the curve;



X111] LINEAR SYSTLEMS CGF QUADRICS 269

the base-curve is a nodal guartic. In general the curve has two
distinct tangents at O which lie in the tangent-planc to the
quadrics at O. The lines joining O te the other points of the
base-curve generate a cone which is cut by any plane through O
in two lines; hence this is a quadric cone, and is, in fact, one of
the cones of the linear system. The generators of this cone which
lie in the tangent-plane at O are the tangents to the curve at its
double-point.

"l'aking #=0 as the common tangent -plane at O=o, o, 0, 1],
and as x=0 and y=o two planes through O which form with,
this plane a self-polar triad for the cone with vertex @;)the
equations of the two quadrics each reduce to the form.J '

ax®+by?+ ezt 2rzw=0. \\
The plane ez + 2rw=0 may then be taken ds thefourth plane of
reference w=o0, thus making c=o. Further)by choosing the

unit-point suitably we obtain as canonica{ équations of the two

quadrics S=ax?+by?+ 2 +2xhe =0,

S’§x2+y2+zzw%o.
"I'he cones of the system S":—'bif’)“’ =0 are then found to corre-
spond to the roots of the equation

(Aiwg)z()\— a)(A—b)=c.
Hence two of the ¢enes coincide. (a—r}x*+(b—7)y*+2*=o01s
the cone which prejects the base-curve from the node.
Here againnthére are three special cases when equalities occur
among the"mms

13-321:' [(21)1] If a=r the tangents at the double-point
cotngide and the quadrics are said to have stationary contact. The
COS:lL which projects the base-curve becomes two distinct planes,

\ %o that the basc-curve reduces to two conies which touck at O.

13-822, [2(x1)]. If a=b the cone S—a¥ =0 reduces to two
plancs 2=o0 and 2+ z(r—a)w=o0, while S§—rS =0 is a proper
quadric cone. ‘T'he plane z=o0 cuts all the quadrics in two fixed
generators 2=o0, x+4iy=o0; the plane z+z2(r—ajw=o0 cuts all
the quadrics in the same conic. Thus the base-curve consists of
this conic and two intersecting lnes meeting the comc in distinct
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points [+4, 1, 0, 0]. All the quadrics have the same tangent-
planes at these two points and at the intersection of the common
generators; they have therefore friple contact.

13-823. [(211)]. Ifa=b=rthesystemis of theform §—Az?=0
and the base-curve is a double-conic, but this double-conic
breaks up into fwo double-lines. All the quadrics of the system
have contact along these two lines, '

13-83. [22]. If the two quadrics S and .S” have a single geneix \

ator in common the remainder of their intersection is a giale-
cubic. An arbitrary plane through the common gencrafdr cuts
each of the quadrics S, S’ in a straight line, and the intetsection
of these lines gives one point on the space-cubiéys hence the
common generator must be a bisecant and thys\the base-curve
consists of a space-cubic together with a bzsecanr The quadrics
have double contact at the points, 4 and B, szb} where the bisecant
cuts the cubic curve. We assume tha’r.ﬁ‘ B are distinct points;
the case in which they are coincident will be treated Iater (13-85).
Let AC and BD be the other gengrators of S’ through 4 and B
respectively, There is one genefator of S, of the system to which
AB belongs, which is cut. Jarmonically by 4C, BD and the.
quadric S; let this be &8, and take ABCY) as tetrahedron of
reference. Then by @ultable choice of unit-point we obtain
canonical equ.a.uon\s\})f the two quadrics
S =22+ wd+2fys+2paw=0,
D S'=zyzx+t2xw=o0.
There aré“two distinct cones in the system S—AS'=o0, de-
ter;r;i d by the equation
N (A=P0—p)o.

\ “13-831, [(22)]. If p=F the two quadrics have in common, in
addition to the generator z=o=w (twice), two generators
2 +iw=0, x Ffy=0, and the base-curve consists of a double-fine
and two lines mutually skew but each cutting the double-line. 1n
this case the quadrics fouch all along the duuble generator.

&

13-84. [31]. In the case of stationary contact (13-821 above),
which was derived as a special case of simple contact when the
base-curve is a nodal quartic, the base-curve degenerated to tw0
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conics touching one another. Another case of stafionary contact
occurs when the base-curve becomes a cuspidal quartic. Let the

point of stationary-contact be D[o, 0, o, 1] and the tangent-plane

z=o0, then the equation of each of the quadrics is of the form

ax?+by? + ¥+ 2 fye + 2gzx+ 2hxy + 203w =0.
The plane z=o cuts the two quadrics in pairs of lines

ax®+by2 4 2hxy =0, a'x2+b'y?+ 2k xy =0,
and there is a pair of lines harmonic with regard to each pair.
Taking these as DB (z=o0=x) and D4 {z=0=y) we have
imo=/'. The cone ' S—rS§' =0 projects the quartic curve from’
the cusp and is cut by the tangent-plane =0 in lines 3§
(ar —a'r)wd+(br' —br)y*=0; \\
these arc coincident, say ¥=0=x, therefore beé'\=b'r. We may
choose the vertex C as a point on the quartig'curve and the
tangent-plane to $’ at C as w=o0; then c=0d'=0,g'=0,f =0.
‘I'he point C has still one degree of freedom and we can choose
it 50 that the tangent at C to the quartic curve cuts DA then
g=o0. Lastly by a suitable choige~af unit-point we obtain the
canonical equations ON
S = ax® + by ¥ 22w) + 2y2=0,
S'=x? -!‘(:)l2+22‘w)=0‘

There is a proper congwith vertex I which projects the quartic
curve, viz. (a— b)&%t2yz=0.

13-841, [ 1)] " If a=» this cone degenerates to two planes.
The two gu rics meet the tangent-plane =0 in the same two

Tines a2 w?— o. These are common generators and form part of
the bage-curve; the remainder of the curve is the conic ¥=o,
x%42%e =0, on which the two common generators intersect.
The base-curve thus consists of a conic and two lines interseciing
each other on it. i _

13-85. [4]. We consider now the case in which the base-curve
is a space-cubic together with a tangent. The cubic curve which is
represented by the parametric equations

wryiziw=01EE1
passes through the points 4 [1, 0, o, o] and D [o, 0, 0, 1}, and
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the tangent at 4 is #=o0=w (for every plane w= uz through this
line meets the curve in two coincident points at 4}, The equation
of a quadric containing the line y=o0=w is
cx¥+ du? - 2fyz + 2gex + 2pxw + 2qVw + 2785w =0,

Substituting x =15, y=12, =1, w=1 and equating to zero the
coefficients of the several powers of { we obtain g=o, f+p=o,
¢+2g=0, r=0, d=0. Then writing f=Ac¢ we have the pencil of
quadrics 22— yw+t2A(yz—aw)=o. N\
The discriminant of this is A%, so that there is just ongscohe
z%*—yw=o0 in the system. AN\

13-86. Imvariant-factors. (»’.';.

These various cases are distinguished accordjfgyto the nature
of the discriminant | S—AS’ |=o, whose #gots determine the
four cones of the general system. In the gehcral case the roots
Ay, Agy Ag, Ay are all distinct, and differcrit\\'ases arisc when there
are equalities among the roots. O

In general the matrix [S—AS'] i€ 5f rank 4, but when Ais equal
to one of the roots it is in general of rank 3. When A=Ay
[S—X,S’] may still be of radk'3, but it will be of rank 2 if A—2
is a factor of each of thefirst minors.

Converscly, if A=A s a factor of each of the first minors
it will be a re ea{éa“ factor of the determinant. If V is the
determinant formed from the first minors of a determinant
A of order z{¥=A""1; and if each element of V contains the
factor f, WisAlivisible by f», but A»—* could not be divisible by
fr unka\és\ﬁ itself were divisible by f2.

When ), =2,=2, [S—A, 5] may be of rank 3, 2, or 1; in the
fifst case the first minors are not all divisible by A—4;; in the

¢ 'g'lé%t case the second minors are all divisible by A—2; and there-

\m \* fore the first minors are all divisible by (A —A;)?; in the sewl_ld

case the first minors may be divisible by A—A; or (A—Ap)? thle

the second minors are not divisible by A—2A,. I'hese properties

arc of an invariant character and correspond to the geomctrical

characteristics of the system. They provide an exact method of

distinguishing the different types of linear systcms, and we shall
explain briefly the notation which is used. :

Der. Let the determinant A contain the factor A—F to the
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power L, and let [, L, ... be the indices of the powers of this
factor which will-divide all of the first, second, ... minors respec-
tively. Then > 4> 4>.... Write f—Li=¢, I —lL=es,.... Then
(A= k)er, (A—F)4, ... are called invariant-factors to the basc A—A.

¢y, €9, ... are each >0 and their sum = I,, hence the sum of the
indices for all the invariant-factors, corresponding to ail the
factors of A, is equal to the order of the determinant. Further
it can be proved (sce Bromwich, Quadratic forms and thetr
classification by means of invariani-faciors, Cambridge Tracts,
1gob) that ¢,z e;2 €, ... S

If ey, €5, ..., &1, &', ... are the indices of the invariant-factors'
to the buses (A—£), (A—k"), ..., the system is denoted bythe
Segre characteristic )
. [(erey . ) (e'ey - -ou): RS
Thesecbaracteristicshaﬁrebeenattachedtothevarious’caécsabove.

13-87. There is one other type of pencil, fl;ll."\}?'flich there are
no invariant-factors, and for which the disefimiinant | §-A8"]
vanishes identically, This is called the ‘Sinigular case. Every
quadric of the system is a cone. We qggclucfe the case in which the
cones have a common vertex, ag by taking this vertex as the

“paint [o, 0, 0, 1} we have a system in three variables which is
analyticaliy equivalent to 2 géncil of conics.

Since the polar-plancgof a given point with respect to the
quadrics of a linear syStem form an axial pencil, and since in the
case of a cone the ‘Polar-plahe passes through the vertex, it
follows that the Méttices of all the cones lie on one line. Further,
since the polaifﬁi)“léne of any point on this line passes through the
point itseli\tiﬁe‘]ine is a generator of every cone, and all the cones
touch th,c}ame plane along this line. Thus part of the b.asejcurve
isa .dgiﬁ'ile—line; the remainder is a conic cutting the line in one

@it To obtain canonical equations take A1, 0, 0, 0] as vertex
ofS" and C [o, o, 1, 0] as vertex of § and the common tangent-
plane y=o0. Take B [o, 1,0,0] as a point on the conic and let the
tangent at B cut y=o0in D, so that BD is x=0=% and the plane
of the conic is == kx. Then by suitable choice pf unit-point the

equations become S=w?+2x),

S’ =dw+2y3.

SAG 18

N

\Y;
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13:9. EXAMPLES.

1. Show that the locus of a point whose polar-planes with
respecttotwogiven quadrics are atright angles is another quadric,

2. If three quadrics have a common conic, showthat theplanes
of their other conics of intersection have a comimon line.

3. If ax®+by*+c2?=1 is an ellipsoid, show that as A varies
from — o to + oo or the reverse, the quadric

CMa byt b ext—1)— (@' + byt ¢t e 1) =0 ~
passes through one of the two series £, H,, I, I{), K, ot
E, H;, H,, Virtual, E. PR N,

4. Show that the surfaccs A
2+zxy+2a5=0 and 2+ zay+3h3e0 )

touch one another at three points, and havej\ti-;o generators
common. Show also that they have a comindiyenveloping cone
whose equation is {z{a -+ b) + 2ab}*+ 8aby
\(\I’ith Trip. I1, 1915}
5. Fmd the intersection of the palrs of surfaces:
(1) &%—2y%+ y2 -+ 220 — xy — Jed+ 2yew =
—;r2+yz+zx—xw7kyév%o.
(i) %*+3x2—2y2— 2yw—]—j’4z'w =
x4 33% — 4y5 + 4ex—2yw=0,
(113) x*y®—2x2 H2yw =0, 30* —y* —2yzt2xw=0.
(iv) 2x?—y? +‘2‘N— 298 — 2XW'=0,
K% —2y25Sab® — 23K — 28y + 2y + 23W =0,
() 2t My - gyz— 8aw+ 4w — 3z0= 0,
427 N 5y —wb+2zx —guy — xw — Oy =
(VIR + 2y% — 32 4 w0l — gyw — gax — 4y — 220 =0,
SR AN w2+t 3R% 4wk 2yz+ 25K — 2xy+4zw e.
OV Gx% 924622+ 2y8 4 1630 — 4y — 2w — 43U =0,
Y 5%+ 52+ 62% — 6y2 + 1225 — 41y — 2400 — 4376 =0O.
(viil) —2x%+8y*+ w?+ 8yz — 2300 + Gxy — 200 — 4y — 430 =0,
33— 5y — 22 P — Yz + 2% — 20y + 4% + 20w + 28W=0-
(ix) 2x%4y® —2w® 4 2y5 + 23% — 23w — 22w =0,
X%+ ¥R — 2% — 3w+ 2yz+ 2aw — 2ypw=0.
(X) 362 —4y*+ 22+ w* — Byz + 430 —qxw =0,
%%+ 2%+ 295 + 200 — 25w — y20 — W =0.
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(xi) x%—2®—zx—xy+aW—3YW—23W=0,
% — 282 — 3% — 4% — 2XY -+ 4x — byw — 10zW = 0.
(xii) ¥%+y2+2% 4 st +axw - 2yw 4 4230 =0,
w24 2v?+ 2%+ B + 2y + 288 + gvw—2yw +Osw =0.
(xiil) a2+3%F 2?4 i —2y2 - 230+ XY - ¥+ YW=0,
X%~y 4 pr—2xy — 20w AW =0,

- Ans. (i) [(11)(11)] Two real lines, x=0=y, 3=0=¥+y—u;
and two imaginary lines,
(5.4 5) & (3—3) =0, ¥y —w=Liz. \
(i) [(31)] Conic (z=0, x*—2yw=0), and two generator's\..\‘
26—y —2W=0, (y—2z—2w)(y -6z —2w)=0 inté}— '
secting on conic, N
(i) [2(11)] A conic in plane x+y+z+w:%2énd two
lines x=0=9, x=y=5—u.
{iv) [(111) 1] Ring-contact in plane » +9"¥ % — W= 0,
(v) [(11)(11)] Four generators \ >
(x—2v—2)(2x+y-+w)=0,
Gty rw)y—2e+w)=a
(vi) {(x1) 11] Double an‘pal:”t at {1, 1, o, o] and
[0, 0, 1, — I]. SO ' '
(vii) [(21) 1] Two cqp.icé’téuching,
(64 23) (5= 9 80) =o.
(viii) [2{(11)] G(Lr:'};x— 13y —=+ 6w=0, and two genera-
_ tors ¥ PR+-2=0, w (2x+2)=0.
(ix) [(2328]/Two double-lines
(R —w)2=c, {y+22)(2x—y+25)=0.
(x)([#2] Cubic curveand a bisecant (x + 5 =0, 2y =@ =0}.
& [(22)] A double-line (3 +2w=0, x+ 3W= o), and two
o8 single lines '
Q ) (x+2=0, ¥+ 3w=0), (¥—2y—2¥=0, x—2%—w=0)
N {xii) [31] Cuspidal quartic. Cusp at 1, —1, 1, —1].
(xiif) [4] Cubic curve and a tangent (x=w, x+y=2) at
[1, —1,0, 1]
6. When two quadrics cut in a conic and two straight lines
passing through the same point A of this conic, the sections of

the two quadrics by any plane through 4 have second order
18-z
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contact at 4 ; but if the plane passes through the tangent at 4 to
the conic the contact is of the third order.

7. If two quadrics bave two common intersecting generators
and touch at all points of the one gencrator and at one point of
the other, then they will touch at all points of the second
generator also,

8. Show that px=1(1241), py=1i+1, px=—2(f-p)f
pw=2(f—p)tare freedom-equations of the cubic curve of integs
section of the quadrics 22+@%+ 2 fyz+ 2pxew =0, ye+ xw=0.

9. Show that every quadric of the lincar system dc_terrn{nétﬂay
the two quadrics \

Y+t at -y oy — 2w — yow — 32w =0}

2P+ 23+ wt+ 20y — 25w — 29w — 25w EQ
is a cone. I'ind the locus of their vertices dndlthe equation of
their common conic. N

.."

Ans. y=z=w. Planeof conic x+y— ’KE\O‘ Common tangent-
plane y==qp, NV _

10. Ata point 4 of one givcn'quﬁdric’: U a tangent is drawn
which touches another given qud}iu U’ ina point B'. At B'a
sccond tangent of T is drawn to touch U in €. At C another
tangent of U is drawn ig tuch 7 in D'. Find the positions
possabl(, for 4 in ordef that 4D’ should touch U/ in 4 and U
in D, \\"’ (Math, Trip. II, 1915.}

11. Prove (ipihat if a ﬁxcd line through one vertex of the
common self—Qol&r tetrahedron of a linear system of quadric loci
meet a vagiable surface of the system in P and P, the tangent-
planes at,®, P’ touch a quadric cone; (ii) that the conics de-
term‘h\iod by the intersection of the surfaces of the system with a
fixed tangent-plane of one of the four quadric cones of the system

-~ Gave all contact in two points, Obtain the properties of the con-
\ “focal system which correspond to these two results respectively.
(Math, Trip. II, 1914.)

12, If u=o0,4'=0; v=0, v'=0; w=o0, w’ = o represent pairs
of opposite planes of 2 hexahedron with quadrilateral faces, show
that the general equation of a quadric which passes through the
eight vertices is dun’ + powv’+ vuw’ =03 deduce that the vertices
of a hexahedron form a set of eight associated points.



CHAPTER XIV
CURVES AND DEVELOPABLES

141, A curve is a one-way locus of points. A plane {analytic)
curve can always be represented by an equation f{x, y)=o0 con-
necting the cartesian coordinates , y in its plane; when it is
regarded as being in three dimensions we must supply another
equation =0, representmg the plane in which it lies, for ag'\. \
single equation in &, y, & represents a surface, and in partlcular

“the equation f(x, ¥)=o, which does not contain g, represgnts a
cylinder, 'The curve is thus represented as the mtersect]pn of a
plane with a cylinder. $

More generally, two equations in the cartesiag coordmﬂtes
x, v, & (or the homogeneous coordinates x, ¥, & *%) represent a
curve i space as the Intersection of two surﬁ\ceq

A curve may also be represented by parametric equations in
which the coordinates x, v, 2, w are exptessed in terms of a single
parameceter. ™}

Still more generally, we may., haare any number of equations

connecting the coordinates x,4%2, @ and any parameters p, g, ..
If these are satisfied by a gi}gle infinity of sets of values of the
coordinates (real or 1m}\gxnary) they rcpresent a curve. If the
equations are all al gebrau, and involve the parameters rationally
the curve is callcd\dn algebratc curve. In particular if the co-
ordinates can be\separatelv expressed as rational algebraic func-
tions of or\p\arameter the curve is called a rational algebraic
curve. N\ :

For <gample, the intersection of two quadrlc surfaces is an
a]g&ﬁra\ic curve, but, as we shall see later, it is not in general

atiohal. The parametric equations px =13, py=1%, pa=1, pw=1
represent a rational algebraic curve. Eliminating £ in different
ways we find that it is the curve common to the three quadrics
xz=y% xw=9yg, yw=2z°

14-11. An algebraic curve is cut by an arbitrary plane in a
finite number of points (real or imaginary); this number is called
the order of the curve. The intersection of two surfaces of order
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m and n is a curve of order m, for a plane cuts the tivo surfaces in

plane curves of orders and 7z and their sa points of intersection
" are the points of intersection of the plane with the given curve.

Thus the intersection of two quadrics is in gencral a curve of the

fourth order.

The rational curve
xiyiRiw=t i
is of the third order, since an arbitrary plane ~N
le+my+nz+puw=o A

cuts the curve in the three points whose parametcrs arg the rbots

of the cubic i3+ mt®+at+p=o0. In this case to eytry value of

the parameter ¢ there corresponds just onc poiut} and con-

versely. W\

14-12. For any rational algebraic curvethe homogeneous co-
ordinates can be expressed as polynomidlsih a parameter ¢ (with
no common factor), for if they are expressed as algebraic frac-
tions we can muliiply each of thes& by the least common multiple
of the denominators since only® the ratios of the coordinates are
significant. To every value.8f the parameter there corresponds
then just one set of ratie§)of the coordinates and therefore one
point. The converseghowever, is not always true, as is secn &t
once from the simpleexample

‘\\ xiyieim=utrutiutil
which redun\:eét_b the above cubic by putting # = ¢,50 that to every
point co{rfgespond two vatues of u, viz. £4/L )

Previded there is a (1, 1) correspondence betwecn the points
apd.tlie parameters, a system of parametric equations of the form

p¥ % f(#), etc., where the functions f(#), etc., are polynomials of
s *) degree n, represents a rational algebraic curve of order .
A 14-13. Liiroth’s Theorem.

"The following theorem enables us to determine the ordet of2
curve from its parametric equations and to obtain a (1, 1) COTe
spondence between the points and the parameters. _

Suppose a curve to be represented by the parametric equations

or=filt) (i=1,2,3, 4)
where f; denote polynomials of degree z with no common factor,
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and suppose that to any point there correspond » different values
of the parameter, #, %, ..., ¢,. Then it is always possible to find
another parameter A, a function of 2, such that there is a (1, 1)
correspondence between the values of A and points on the curve.
Since £, ..., ¢, all correspond to the same point, we have

A () falty) falt) =G foltd () Lt

Forrin the three expressions (rs=1, 2,0, v)-

Fi(O)=f:(0fi(t)-fi)fi(t) (=1,2,3). A
These arc polynomials in ¥, of degree #, which all vanish\f@r.\
t=t;, ..., {,; they therefore have the common factor « M
(F—t)(E—t)...(t—1),

and no other common factor which contains ¢, Th}g? may also
have a common factor which does not contain 2as it will involve
t, denote the highest such factor by ¢, (i) Fhen the highest
common factor of F,, F,, Fyis \

$o(tr)(2=11)..-(EEH)-
fsy .1uy 1, are of course not contained\in this explicitly, but only ¢
and #,, and we shall write it ipz‘t&ié form
H=o(t)(E—1)... (E55)
Ed(t) S ()P L+ b, (k)

F,, F,, Fyare all s c:giv éymmetrical in ¢ and ¢ ; the common
factor ¢—?, is also'skéw symmetrical, and the remaining factor
of each is symaigtrical. Hence H is skew symmetrical in Zand #,,
and as it is of dégree ¥ in #, it is also of degree vin ;. At least one
of the Qﬁ&tiong $, say &.(f,), is therefore of degree v. Let
$(t,) dedany other of the coefficients which has no factor in
Cot}\lt{i&)n with ¢,(¢) and write
O A= () (D).

\The coordinates can now be expressed rationally in terms of the
new parameter A Since (¢—#)...(—1%) is symmetrical in
fy ..., £, the ratios &;/d, are symmetrical, and therefore A is
symmetrical. To every point correspond v values of #, and to
each of these corresponds the same point. Hence there is a
(1, 1) correspondence between the points and the values of the
paramcter A,
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In the parametric representation of a rational curve we shall
assume generally this {x, 1) correspondence.

Ex. 1. Show that the equations
pr =142,
py=21—u-45,
pa=3u*—2u438,
pw=4qut—3u+11,

represent a straight line, and find a parameter A for a (1, 1) COPEE-
spondence. A\
A=(ut+2)/(—1); px=A py=2A—1, pr=3A—2, pis =g=3.]
Ex. 2. Prove that the condition that the paramel:r‘i}: cfjuations
pr;=a+hi+e; (i=1,2,3,4) should represent alstraight line is
that the matrix \/
4 G a4y @

by B by by [LF

6 & 63 &)
should be of rank 2. o\ ¢

N

14014, The complete intcrsd

ion of two algebraic surfaces
may consist of two or more diétiﬁct curves. Thus the intersection
of two quadrics may bredk up into two conics. If two quadrics
have a gencrating lin@é\in common the remaining part of the
curve of intersectionor residual is a cubic curve. In these cases
the complete cufve of interscction is said to be reducible. A plane
curve f(x, yp=o/is reducible simply when f{x, ) breaks up in_to'
factors. TH Obtain a criterion for the reducibility of a curve i
space \«{%:“céhsider a cone which contains the curve, If we project
the qu}Ve from the centre O=Jo, o, 0, 1], say, we obtain a cone
:who'ée homogeneous equation f(x, ¥, 2)=0 is found by elimi-

“\hating @ between the equations of the two surfaces. This coné, .

and thereforé the curve, will be reducible if f(x, v, =) breaks up
into factors. .
It is not always possible to represent an irreducible algebraic
curve as the complete intersection of two algebraic surfaces. In
the case of a cubic, for example, the only factors of 3 being 1
and 3, the curve cannot be the complete intersection of two
algebraic surfaces unless it is a plane cubic. But two quadrics in
general intersect in a curve of order 4 and if they have a common
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gencrator the residual is a curve of order 3, which cannot be a
plane cubic since a plane cannot cut a quadric in a cubic cutve.
The cubic x:y:g:w=12%:£2:¢: 1 is the partial intersection of
anv two of the quadrics xz=3y%, axw=yz, yw=2? and can be
represented exactly as the curve comfon to these three quadrics.
To represent an algebraic curve exactly by the intersections of
surfaces as many as four surfaces may be required.

14-21, A line does not in general meet a given curve in any Q
point, but as oc? lines pass through any point of the curve thegey
are 208 lines which meet the curve. These form a complex <\

Again, there are co? lines, bisecanis or chords, whichyciit 2
curve in two points, since each of the points has one degtee of
freedom. These lincs form a congruence. \\

"I'he lines which pass through a given point and eut a curve of
order z form a conc of order », and the lines yhieh lic in a given
plane and cut a given curve of order # forg'\k:plane pencils. The
complex is therefore of degree # and kau'be represented by a
single homogeneous equation of deg;cé win the line-coordinates,
the linc-cquation of the curve. ON° .

The number of bisecants, Wﬁibh lie in a given plane is
in(n—1), the number of line$“eonnccting the # points in which
the plane cuts the curve, {Hence the order of the congruence of
bisccants is 1n(n— )¢ The class of the congruence is equal to
the number of bisecahts which pass through a given point O.

14-22. If the{durve is projected on a plane from an arbitrary

point O thqpi‘ejection is a curve of order n. Corresponding to a
bisccant_ghyough O we have a double-point on the projection.
Viewedfrom O the given curve has thus an apparent double-point
ther&¥The number of bisecants which pass through a given
”p@i.?it O is thus equal to the number of double-points on the

- Ngrojection from O. This is a definite number for a given curve.

14-23. A plane curve of order # is determined by 3n{n-+3)
points, for this is one less than the number of coeflicients in its
equation, viz. }(n+1)(n+2). The maximum number of double-
points which it can possess is $(z— 1}(n—2), for if it had one
mote, then through these 3(#%—3n+4) double-points and z—3
other points on the curve, i.e. altogether $(n—2)(n+1), a curve
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of order n—2 1s determined which would mect the given curve
in (n?—3n-+4)+{nm—3)=n*—2n+1 points, whereas a curve of -
order #—2 cannot cut a curve of order # in more than nin—2)
points, '

14-231. 4 plane curve which has its maxtmum number of double-
points is rational, for through the }(n—1){n—2) double-points
and #—2 other points on the curve, i.e. altogether L(n—2)(n+ 1)
a curve of order # — 2 is determined; and if only # — 3 additional
points are taken, then a lincar system of curves of OI‘(]EI"?;\:"\Z.\I‘S
determined, each meeting the curve in >

W
270

(r—1)(n—2)+(n—3)=n(n—2)—1_ \‘

given points, and therefore mecting it in one WSl point, If
in particular these #—3 points arc taken on @piven straight line
the variable curve of order n—2 meets, fRis line in one other
variable point. Hence there is a (1, 1).§Q\rrespondence between
the points of the given curve of orde? # and the points of the

straight line. ' o :

Ex. 1. The plane cubic cutve 33 4 axa® 4 bxys =0 has a double-
point at [0, 0, 1]. "The line g1.=2Ax, which passes through the double-
point, cuts the curve aggifi\’ where A%y + az + bAz =0. Hence we have
the parametric equagiens)

pr=a-+br °

N

O py=ar+dx .
AN
Y pr=—A3
Ex. z\a’he cardioid, whose polar equation is » =a (1 +cos £), and
whosg Bomogeneous cartesian equation is

NN (2% +3% —axz)?=a? (x% +?) &%,

N \ - *
\_has a cusp at the origin [o, 0, 1], and cusps also at the circular points
[r,%#,0]. A conic through these three points and another fixed
point on the curve, say [24, 0, 1], is a circle

(x—~a) +(y—AP=a2+2A2,
ie. L&t yE=2 (ax+Ay) 5.

Eliminating & between the two equations we find, after removing the
factors (x?+3%)? and y, : '

sahw=(at- 4) 3,
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Tlence we obtain the parametric equations

p =208 (a2~ 43),

py=8a'A,

pr=(a? + 4%
or, putting 23 =ay,

pr=2a (1—p’)
Py = 4ap :
pr=(1+p) [

14-232. A plane curve which has its maximum numb,f{r\of‘
double-points, and is therefore rational, is said also to, beuni-
cursal, since all the real points of the curve (with thi “possible
exception of certain isofated points, acnodes or do bie-points at
which the tangents are imaginary) can be tracd by the variation
of a single paramcter through all real value from — o0 to +co.
The number by which the number of d {ible-points falls short
of the maximum is called the deficiency ‘or gemus, usuaily de-
noted by p. S

14-24. 'T'he maximum numbed of apparent double-points (for
an arbitrary point O) for a,gf;ﬁi:e-curve of order n is therefore
also L(n—1)(n—2). If the point O lies on the curve, the pro-
jecting cone is of orc}gr}x— 1. An apparent double-point in this
case corresponds o, ttisccant, hence the maximum number of
trisecants which’pass through an arbitrary point of the curve 1s
1(n—2)(n—gJWhen the curve has the maximum number of
apparent dauble-points for a given point O it is rational, for
taking O\.ls the point [0, 0, 0, I} and the plane of projection as
w=g(there is a (1, 1) corrcspondence betvieen a parameter X and
theipoints I’ on the plane w=o0, and between these points and

”";thi: points P of the curve there is also a (1, 1) correspondence.
Tt can be proved that the number by which the number of ap-
parent double-points falls short of the maximum Is the same
from any general view-point, and this is called the deficiency or
genus of the curve. This follows from Riemann’s theorem that
any two curves between which a (1, 1) correspondence exists
have the same genus, but it would be beyond the scope of
this book to go further into it.
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14-3. A line which meets a curve in two coincident points,
i.e. the limiting case of a bisecant, is a tangent-line. "I'he tangent-
lines form a one-dimensional series like the points on the curve,
The planes which- pass through tangent-lines form a two-
dimensional system like the tangent-planes of a surface, and can
be represented by a single equation in plane-coordinates (£), the
tangential equation of the curve. Thus an equation in (£) may .
represent, not a surface, but a curve. ¢

A plane which meets the curve in three coincident polnts is

~called an o.s‘calaimg plane. At each point on the curve thereus+in
gencral a unique osculating plane. These form a one-dingetfsional
series, represented by two equations in plane- coordinate~

14-4, Thus there arc three one-dimensional syst:ems associated
with a curve: (1) the points on the curve, (2\he tangent-lines,
(3) the osculating planes. There is a symmetry among these
systems, (3) is dual to (1), while {2) ig skli dual, a tangent-line
being as well the limiting line of intéxgection of two osculating
planes as the limiting line joining\two points. Any one of the
three systems determines the othcr two. We have also the two-
dimensional system of planes through tangent-lines, and dual
to this we have the two-dimensional system of points on tangent-
lines. But the latter issa sort of surface; it is represented by a
single equation in &Jubt as the system of tangent-plancs is re-
presented by a sifigle equation in (£). Psychologically a locus of
points has aydehcreteness which is much more difficult to at-
tribute to agsemblages of lines and planes, and this surface has
been elévated to importance under the name developable, the
signifita wce of which will appear later, As a two-dimensional
locus of points it is a sort of surface, but it differs from an
Ve ~0rd1nary surface just as essentially as a curve does. A surface

as a locus is dual to a surface as an envelope, both being two-
- dimensional assemblages, the one of points, the other of planes.

A curve as a locus of points is dual to a developable as an en-

velope of planes, both being one-dimensional asscmblages of

their respective elements; a curve as an envelope of planes is
dual to a developable as a locus of points, both being two-
dimensional assemblages; finally a curve as an assemblage of
lines (tangents) is dual to a developable as an assemblage of lines
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(generating lines). From the last point of view a developable has
the character of a ruled surface, the characteristic distinction
being that the tangent-planes of a ruled surface form a two-
dimensional system so that at each point of a generating line
thereis adifferent tangent-plane, whilc in thecase of adevelopable
the tangent-planes at all points of a given generator are the same
and they form only a one-dimensional series.

& )
Fig. 45. A developable, with its edge of regression and generators

- \

14-41. Startingw’hh the developable as a 0ne-dimen§ional
series of planes dgfending on a single parameter, we 0bta1‘n the
generating 1i{es’ as the limiting positions of the lincs of inter-
section gnnm planes which come into coincidence, and the locus

of the Jimnting positions of points which lie in three ultimately
coingident planes is the curve. The generating lines are tangents
Joff tj’}c curve, and the planes are its osculating planes. From this

\point of view the curve is called the edge of regression of the
developable.

14-42. The term ‘“developable” refers to a characteristic
property of the figure comsidered as a deformabl'e surfat:t.a or
material sheet. By a succession of small successive rotations
about the generating lines the surface can belaid flat or develope‘d
on to 2 plane, without any stretching or tearing. A cone has this
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property and is a developable, but its curve reduces to a single
point—the vertex. A plane curve, which is dual to a cone, has its
developable already flat—it is the lanc of the curve.

P ¥ p

14-43. Consider the section of a developable by a plane. The
plane cuts the curve of the devclopable in 7 points (# being the
order of the curve). It cuts each of the generating lines.in a
point, and the locus of these points is the curve of section C.
Finally it cuts each of the planes of the developable in a line, and >
these lines are tangents to C. At an arbitrary point on C thete s
a unique plane of the developable and thercfore a uniquesdngent
to C; but at 2 point P on the edge of regression thefe e two
coincident gencrators and the curve € has a do ulglt:-fpoint there;
further there are two coincident planes of the developable
passing through this gencrator, and the tangcﬁts tg C at the
double-point are coincident. Hence P issaenisp on the curve of
section; that is, any plane in general, c‘fsté the developable in a
curve having a cusp on the edge of tepression, The edge of re-
gression is thus a cuspidal edge, The developable considered as
a surface consists of two sheetsywhich mect at the cuspidal edge.
The tangents to the curve, ate divided at the points of contact,
the two parts belonging(te the two separate sheets. In a similar
way the assemblage ¢f Pplanes which pass through tangents of the
curve, and produce'the curve as an envelope, have the develop-
able as a singularity or assemblage of double-planes. The en-
velope consigtsof two parts; each planc is divided by the tangent-
line of t}}f{%urve, and the two portions belong to the two parts of
tht?j ‘% clope. _

451, In addition to the order # of a curve there are other
(fumbers which characterise it. It must always be borne in mind
) that ‘we have to deal with not merely a curve but three o0&
dimensional systems, of points, lines and planes. The order is the
number of points which the system of points has in common
with an arbitrary plane field of points. Reciprocally, the class m
is the number of planes which the system of planes has in comn~
mon with an arbitrary bundle of planes, i.e. the number of
osculating planes of the curve, or planes of the developable,
which pass through an arbitrary point. This is clearly equal 0



v CURVES AND DEVELOPABLES © 287

the number of apparent inflexions of the curve, i.e. the number
of inflexions of an arbitrary plane projection of the curve, or the
number of inflexional or stationary tangent-planes of the pro-
jecting cone. Reciprocally, the order is equal tothe number of
stationary points or cusps on an arbitrary plane section of the
* developable, which agrees with what has been already observed.
The class is also equal to the class of an arbitrary plane section
of the developable. A third number is the order of the develop: ¢
able, i.e. the order of the plane curve obtained by taking a section
of the system of planes by an arbitrary plane. This is called(the)
rank ¥. Reciprocally it is also the class of the cone _whicfx.}:ro—
jects the curve from an arbitrary point, or the class of anarbitrary
projection of the curve. \\

14-52. For a plane algebraic curve the fundamedtal numbers:
order #, class m, number of double-points &, ¢usps x, double-
tangents 7, and inflexions ¢, are connected :y}liicker’s equations,
by means of which, any three of the; tumbers being given, the
other three can be determined. These-are

m=n(n 1) — 25— 3x,
3n(?3~2)=,§-.i-.‘68+8x,
and two others obtained.b% interchanging the pairs n, m; 8, r;
x, . Now consider a gﬁﬁe-cuwe of order », rank #, class m, and
having 4 apparent*deuble-points, H actual double-points, X
cusps, and [ actdabinflexions. Then for an arbitrary plane pro-
Jection we haweld plane curve for which
.,,7\'3?'&"?:, wm =y, 8'=h+H, «'=K, J=m+1L
chce.{ﬁn,’ h, H, K and [ are given, the rank and class are de-
tcr{ni:rjlcd by the equations
O r=n{n—1)—2(h+H)—3K,

Y%  m=sn(n—2)—6(h+I)—8K-1.

14:6. The space-cubic.

We shall consider now more particularly the curves of the
third order or cubics. .

14-61. If O is any point on the curve, the lines joining O to
other points of the curve generate a quadric cone, since any plane
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through O cuts the curve in two other points and therefore the
cone in two lines. A single infinity of quadric cones can therefore
be passed through a space-cubic, each having as vertex a point
of the curve,

Consider two such cones, vertices O, and O,. 0,0, 15 a

" generating line of each cone, and each cone contains the whole

curve. The intersection of the two cones then consists of the
cubiccurve and the line ©,0,. If O,is a third point on the curvg
we obtain another quadric conc containing the whole curve. The
three cones have in pairs the lines 0,05, O5 Oy, 0,0, in copimen,
but these threc lines have no common point, hence €hgctbic
curve is represcnted as the complete intersection of thige quadric
cones. m\:

14-62. A line cannot cut a space-cubic in ware than two points,
for suppose 4, B, C to be three collinean points on the curve,
and P any other point on the curve, thpQ: the plane P4 BC meets
the curve in more than three pointsy’Hence there are no tri-
secants, All the bisecants which passthrough a given point of the
curve form a quadric cone. (O

Two bisecants cannot cutioile another except at a point on the
curve, for if they did t];ley"vmuld determine a plane meeting the
curve in more than :th){ee points.

14-631. Let f;’?ﬁ}BB’, CC be three bisecants, and = any plane
through 4.4 &.Luts the curve againin a single point P, and this
determincg™with BB’ a unique plane £ and with CC’ 2 unique
plane ;L\'Zl-‘iénce we have three pencils of planes related in pairs
in (1)ycorrespondence. Conversely, the curve can be generated
by}.:the common point of a set of corresponding planes of three

B8mographic pencils of planes whose axes bave no point in

N
%
\ }

“common. As an example, let ABCD be the tetrahedron of T¢-
fercnce. Then the pencils with axes CD, AB and 4D cat be
represented by the equations
x=2Ay, 2=pw, y=r3.
The simplest (1, 1) correspondence is represented by
A=p=v=¢
Then xjy=ylz=zfw=1%,
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and therefore the coordinates of the common point of corre-

ing planes are
sponding p [, 2, ¢, 1],

In a similar way it may be shown that for the general case of any
three homographic pencils whose axes are not concurrent the
coordinates of the common point of three corresponding planes
are represented by polynomials of the third degrec.
Now the equations
x=1% y=1% 2=f w=1I
are freedom-equations of a space-cubic, for the plane ,\:\
In+my+ng+pw=o : O
cuts the curve in the three points whose parameters are the'teots
of the equation s,

#*7

34 mit+nt+p=o, m\‘
~ The general space-cubic is therefore a rational ciryer”

14-632. 'The plane x=0 or BCD meets thi?§\cﬂrve in three
coincident points at D and is the asculatiﬁg,\pla.ne at D{t=o).
Similarly the plane w=o0 or ABC is_the> osculating plane at
A(t=00). Any plane x= Ay through O ineets the curve in two
coincident points at D; the line CE also meets the curve in two
coincident peints at D and isitherefore the tangent at D.
Similarly 4B is the tangent@“t A.

14-64. xz=1y? and ygé=a® represent cones which contain the
curve and have theix %tices at D and A respectively. The
equation xev =y r,epreéents a quadric, alse containing the curve.
This is gencra;{d %y the line of intersection of the two homo-

graphic pengils. x=1y, 5=1w,

and 1Is th;‘.}}fore a quadric containing the bisecants €D and A8
as gqn@rﬁ'ting lines. For all values of &, g, v the quadric

O AQ—ax)+p(yz—aw) +(t-yw)=0

contains the curve. Hence through a space-cubic there are oo
quadrics. The condition that a given quadric should contain a
given space-cubic is therefore equivalent to seven linear condi-
tions, An arbitrary quadric cuts a given cubic curve inzx3=0
points; if it contains seven points of the curve it will therefore

contain the whole curve.
SAQ 9
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14-641. When a conic and a cubic lie on the same quadric -
they intersect in three points, the points in whizh the plane of
the conic meets the cubic curve. Hence, in particular, of two
intersecting generators one meets the cubic in two points and the
other in one point. It follows that each generator of one system
meets the cubic in two points and each generator of the other
system meets it in one point,

14-642, The bisccant gencrators of anv quadric which cofie >
tains the curve therefore determine an involution on the quye,
since its points are thus made to correspond in pairs, Conyersély
‘an involution on the curve determines a regulus and thefefore a

. R
quadric. \

Analytically, the line joining two points ¢, t,\)‘n the cubic is
given by ’
- pr =t o, A

_apd2 2 <!
py =ut +z:~:‘ ,x\
pz =utl +&Ly
o=,
where #fv is a variable patameter. Substituting in the equation
of the quadric X

My P (e —sw) 40 (52— ye0) =,
we obtain ufz}Y—z’)z{htt'hu(t-{-r’)-{— vi=o0,

u=o0and v56give just the two points of the curve ; the equation,
howeverigvidentically satisfied if

"\‘ ) '

A\ At +p(E+ ) +v=o.

Wlif:n A, p, v are given, this determines an involution ; and th"n
(the involution is given, A, x, v are détermined, fixing the quadric.

~\
A% 14643, If S and ' are two quadrics containing the curve
they have in'common a generating line / which is a bisecant of
the curve. T'his is the line joining the pair of points common t0
the two involutions which determine the quadries,
A unique quadric can be drawn to contain the curve and have
twa given (non-intersecting) hisecants as generators, for these
two bisecants determine an involution on the curve.
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14-651. Through any point O, not on the curve, there passes one
and only one bisecant. Join O to any point R on the curve, If
OR is not a bisecant a plane through OR will cut the curve in two
other points P, P/, and these pairs form an involution. The lines
PP, which all intersect OR, form one regulus of a quadric, and
the line of this regulus which passes through O is the bisecant
requircd. From this result it follows that a cubic curve possesses
vne and only one apparent double-point. Every plane projection
is a cubic having a double-point and is therefore rational.

: ¢\

14-652. A space-cubic cannot have an actual double-point, for
if it had, then through this point and two other points of\ the
curve a plane could be drawn which would have four pgints in
common with the curve and would therefore contain}i€ curve.
The curve would then be a plane cubic. Furthefyaspace-cubic
cannot in general have an apparent cusp. A spacg-curve in fact
can only have an apparent cusp viewed from an arbiirary point
when it has an actual cusp; it will have advapparent cusp when
the point of view lies on the developable:

The plane projection of the gen@ifaf cubic from an arbitrary
point is thus in general a nodal cﬁbic, which is of class 4 and has
three inflexions. Hence the claseof the space-cubic is also 3 and
its rank is 4. Itisa Self—id?iél figure, .

14-66. 4 space-mb&aﬁ be made to pass through six arbitrary
points, no three of #chich are eollinear and no four in one plane.
For the five poisB, C, D, E, F determine 2 quadric cone with
vertex 4, ar;c\i;ﬂfe five points 4, C, D, E, F a quadric cone with
vertex B.ﬁ(he intersection of these cones is the line AR together
with an.éf}ﬂte space-cubic which passes through the six points.

~14:871. Ona given quadric surface U there are two systems
of.eubic curves; the one system has the A-generators as bisecants,
and the other the p-system,

Consider two cubics C; and C; of the same system, and let ¥,
and ¥, be two quadrics which contain them ; these cut U further
in two generators A, and A, of the same system, which are bisecants
of both curves. The three quadrics have eight points in common;;

these all lie on either €, or A, and on either C, or 4y, Now X,
19-2
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and A, are both bisecants of both €, and €, and do not intersect
one another; this accounts for four of the cight points and the
remaining four must be common to €, and C,..

If €y and C, belong to different systems on U, the quadrics ¥,
and V, cut U in generators Ay and g, of different systems.
A, cuts C, in one point, g, cuts € in one point, and A, cuts p, in
one point. Thus just three of the cight points arc accounted for
and the two curves have five points in commnion. Q)

14-672. Through five arbitrary points on « gizen quadnc.,gkme :
pass two space-cubics which lie entirely in the sw ffw. Jeet l, m
be the generators of the surface through I. 'Ihcn & definite
quadric cone with vertex F is determined to contam the points
A4, B, C, D and the generator /. The mtersectlm}\df this cone with -
the given quadric consists of the common gehgfator and a space-
cubic which passes through 4, B, C, 1), dnd Z. A second space-
cubic is determined by the cone withi #értex £ which has m as
generator. The former has / and aJ\the generators of this system
as bisecants, the latter has » apd all the generators of the other
systern as bisecants. Besid(,s"fhése two there are no others, for
two cubics of the same system can have only four points in -
common.

Ex, If a conic cu_ts} c¢ubic curve in three points, show that there
i$ 2 unique quadxkgsurface which contains them both,

14-681. 'THetangent at ¢ is the limiting position of the chord
joining # and#’ when #" - . 'I'he line-coordinates of the chord 2
are gi\jfﬁ\by the matrix

\. )" 3 2 7
",\\ . [ B ot o1

A S A

)

\and are therefore (cancelling the factor £—12)
) [+t + 82 t+ ¥, 1, —f, @ (t+8), —20%)
'The coordinates of the tangent are therefore
[32% 2¢, 15 —, 213, — '],
These can also be obtained from the matrix

) L S A
312 2t 1 oJ’

the sccond line being obtalned by differentiating the first.
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14-682. The osculating plane at ¢ is that which meets the

curve in three coincident points at ¢, and its equation is therefore
x—3iy+ 3% —fw=o0,

The osculating plane at f=ois x =0, and at { = ¢ s w=o0. These
three osculating planes intersect at [o, ¢, 1, of. The plane through
the three points ¢, o, c0 is y==f, and this passes through the
common point of the three osculating planes. Ilence the
osculating planes at any three points tntersect on the plane con-
tatning the three points.

14-683. The plane & (Ix+my-+nz+ pw=0) cuts the curve it
three points 4,, A,, 4, whose parameters 1, %, #; are the rodts
of the equation o\

34+ miP-fnt4-p=o0. RS
The osculating planes at these points are \%
x—3ty+3tir—tPw=0 (I=1,2)3).
The coordinates of the point P common, j@f{l‘lése are
[3ti2ats, Zfi2s, E?{l " 3],
ie. [~3pfh nfl, i 3]
or - [0, —H, f”s::" 33]

There is thus a correlation bétween the planes 7 and the points
P, forming a null qystcm\sm(,e each peint lies on the cerre-
sponding plane, and the'sélf-corresponding lines of the system
form a linear complex. The self-corresponding lines, or lines of
the complex, are those which pass through any given point and
lie in the cerrcspondmg (polar) plane. Among these lines are the
tangents to thie¢’cubic curve, for the osculating planc o at a point
4 contaij the tangent a at 4 ; any plane 7 which contains & cuts
the cune in 4 and two other points B, C, and the osculating
planesat 4, B, C intersect on w at the point Pona which is the
}\olé “of the plane 7. Thus the tangent a lies in 7 and passes
through P.

Since the coordinates of the tangent at £ arc

Pn=3% D=2t p=1; pu=—1% pu=2 Pn=—1%
there is just one Lnear relation connccting them, viz.

Lot 3Pm=0
This represents a linear complex which contains all the tangents,

N

KA
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and is the only linear complex in which they are contained. Itis
therefore the linear complex determined above, This follows.
also from the equations of the correlation or null system, viz,

pha=ay, pli= —ux, pa=3%3, p&y= —3a,,
1.. 4y =1, ay=3, while the other coeflicicnts arc zero.

"The polar of any point on the curve, with regard to the linear
complex, is the osculating plane at that point, and in general the
polar of any point P is the planc through the points of contact 0f
the three osculating planes which pass through P. A

{

14-89. Projectively, all space-cubics, like all donics, are
equivalent. Metrically, space-cubics are classificdsdctording to
their relation to the plane at infinity and the éele at infinity.
In general the plane at infinity cuts the cur.i-“e;\in three distinct
points, and then the curve goes to infinley* in three different
directions; the tangents at the threg Qbints at infinity are
asymplotes, and the osculating plancssare asymptotic planes. The
asymptotes are all mutually skew{Fhe asymptotic planes inter-
sect in a point on the plane at infinity, and therefore form a tri-
angular prism, N

There are four types of ji}ui'V'es:

(x) The cubical hypérbola. Three real and distinct points at
infinity ; three finiteyasymptotes and asymptotic planes. The
cone containing*the curve and having its vertex at onc of the
points at infinity becomes a cylinder; and as there are other real
points at infifity it is a hyperbolic cylinder. "I'he curve is there-
fore thesintersection of two hyperbolic cylinders which have a
cor{g@;‘ line at infinity, i.e. having one asymptotic plane of one
cylitider parallel to one of the other.

,\.f f(z) The cubical ellipse. One real point at infinity and two con-
\Jugate imaginary points; one real asymptote. The curve is the

intersection of an elliptic cylinder and a cone.

(3) The cubical hyperbolic parabola. "Two coincident points at
infinity, and one single point; one finite asymptote. The curve
is the intersection of a hyperbolic and 2 parabolic eylinder which
have a common line at infinity, ie. having one asymptotic plane

of the hyperbolic cylinder parallel to the axial plane of the para-
bolic cylinder,
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(4) The cubical parabola. ‘Three coincident points at infinity.
The plane at infinity is an osculating plane. The curve is the
interscetion of a parabolic cylinder and a cone, the tangent-plane
to the cone along the common generator being parallel to the
axial plane of the cylinder,

Ex. 1. Show that the equations -
eryigiw=t{t—1) t{t+1): -1 {#—1)

represent in cartesian coordinates a cubical hyperbela, and that the

equations of the hyperbolic cylinders which contain it are A\
—yw-+ys +57%0 =0, . O
X0 —2W+XT =0, “("}‘.
xey — g5y + 23y =0. LV

Ex. 2. Show that the intersection of the cone yAh32=zx =0 and
the elliptic cylinder y2 4 3% —yw=0 is a cubical gllipse which can be
represented by the parametric equations L

Xiyigiw=i(B41): 2 PANEE L,

Ex. 3. Show that the intersectioﬁ:lof the parabolic cylingler
22 —awy =0 with the hyperbolic cylinder zew +ws —x3=0 is a cublcal -
hyperbolic parabola N

Xy :z:E:J:i:‘fg(t:—l):i(t—l):f-—'I.

£%. 4. Show that a&fiéal parabola can be represented by the
equations .
(vryxiw=8:010211,
* and that it is th@\ftfersection of the cone y*=sx with the parabolic
evlinder =2 : Eﬂ:}\
14-7. ‘Q\gértic curves.
A diitve of order 4, or space-quartic, is met by an arhitl.*ary
plandin four points, and by an arbitrary quadric surface in eight
}01411‘[8. Through nine-arbitrary points on the curve a definite
quadric is determined which must contain the whole curve pro-
vided it does not degenerate. Hence at least one quadric S=o0
can be determined to contain a given quartic curve. If a seeond
quadric S’ =0 can be drawn containing the curve, the curve is
the intersection of these two quadrics, and every quadric of the
linear system S+AS’=o0 contains the curve.
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We have to distinguish then two diffcrent species of space-
quartics :
First Species: those which are the intersection or base of 3
pencil of quadrics,
Second Species : those through which only one quadric passes.

1471, Space-quartics of the First Species.

A space-quartic of the First Species is the complete inters
section of two quadrics which do not have a common generagory

as we have just seen, it lies also on every quadric of thp\’ Tingar
system determined by these two, .\

14-711. Every generator of a quadric S which cmzaeéz'n;'tke curve
cuts it in two points. Let I be any generating lide of S. A plane
through / cuts S in another generator /” ag\well, and cuts any
other quadric 5" of the linear system in g.famic C. But Ceuts/
and /' each in two points which, being éommon to S and .5, lie
on the curve, P \% -

Conversely,. if a quartic curve Kon a quadric P cuts every
generator in two points it is a guartic of the First Species, ie. a
second quadric can be drawi to contain the curve. Take eight
arbitrary points 4,,...,ds oh X and let O be any other point.
"I'hese nine points defermine a quadric O which cuts P in a
quartic curve K’ f@hé First Species also passing through the
eight points A4, six;%: these are common to P and . We have to
prove that, w\1th” the given conditions, X’ coincides with K.
With centrg’ﬂl project K and K’ on to an arbitrary plane o The
projectiensare two plane cubics €, €, which, if they arc distinct,
intergedt in nine points; seven of these are the projections
ng,:;-,Bs of the common points 4,,...,4;. Further, the two

. génerators of P through 4, are by hypothesis bisccants of K, and
\\ \‘they are also bisecants of K, since K’ is a quartic curve of the
First Species; hence the remaining two points of intersection of

the two plane cubics are the points, G and &, say, where these -
two generators cut «. Now a plane cubic is in general uniquely
determined bynine points, and through eight given points a linear
system of co cubics can be drawn. Any two cubics which pass
through the eight points intersect in a ninth point which 18
common to all the cubics of the linear system ; this point is then
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determined when the eight other points are given. Thus nine
peints uniquely determine a cubic unless they are associated in
a particular way. But the nine points B,, ..., B;, G, G’ are not so
associated, since By, ..., B, are all independently variable, hence
the cubic through these is uniquely determined and thereforc C
and C” coincide. As the projections of K and K’ from any other
point A, must similarly coincide, these two quartics must them-
selves coincide,

14712. A quartic curve of either species can be considered®y
as the partial intersection of a quadric with a cubic surface. Zthe -

complete intersection is a curve of order 6, and the resz’gz’,z{(zf fsa
conic, two skew lines or a double-line of the cubic surfags. If the
residual is a conic, any generator of the quadric me’etti\ﬂlis in just
one point, the point in which it meets the planeef the conic; the
two other intersections of this generator with'the cubic surface
must therefore be on the quartic curve. Thus-every generator of
the quadric is a bisecant, and the quarficis of the First Species.

14:713. A quartic curve of the First Species, being the com-
plete intersection of two quad;ig’:g} has no trisecants, for if the
line I cut the curve in three ponts 4, B, C, a plane through /
would cut the two quadriéshn conics intersecting in three col-
lincar points A4, B, C, which is impossible. Hence, viewed from
any point on the cutvs, it has no apparent double-points. The
cubic curve which is the plane projection from a point on the
curve is therefoféhot unicursal but with deficiency 1. It follows
that the q@;a?t;i?: curve is not rational, i.e. its coordinates cannot
be exprpgtc\d‘ rationally and algebraically in terms of a parameter.

14284, Assuming that the two quadrics do not touch, they

hid¥d a common self-polar tetrahedron. By a suitable choice of
uhit-point the equations can be expressed in the forms
S=xttyt—2t—wi=o, S’ =axt by +et—wi=o.
The coordinates of a point on S can be expressed in terms of
parameters %, u
px=1f+u, py=I1~—1tu, pr=1+, pp=t—i.

Substituting in the equation of the other quadric we have an
equation which is of the second degree in both #and . Itis not

QY
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possible to eliminate one of the parameters and express , v, 2, w
rationally and algebraically in terms of one of them,

The linear system AS+S'=o0 contains four concs, Suppuse,
by another choice of unit-point, the equations of two of these are
X242 =0, RPx24 2% —pi=o.

The parametric equations of the former can be written
px=sind, py=cost, pw=r,
and substituting in the second we have
2r=1-—k%sin(, O\

Write #=am (4, k) (an elliptic function), then O

pr=snu, py=cnu, pr=dnu, pw= 1“.':":'«.
Thus the coordinates of 2 point on the quartié are expressed
parametrically in terms of elliptic functionga’On this account
this type of quartic curve is called ellipticy It can be shown
generally that a curve is elliptic when 1t§ génus=1. For higher
genera other functions (hyperelliptic)\are required for a para-
metric representation. RO :

14-715. If the quadrics touch, the curve of intersection hasa
double-point there. 'This ig\a" particular case of the general
theorem for any two surfacés. At an ordinary point bf inter-
section P the tangentplanes are distinct and dctermine one
definite tangent t \ghe curve of intersection, and any plane
through this /inéguts the surfaces in curves which touch at P.
But when the gﬁrfaces touch at P every plane through this point
cuts the S}ugace in curves which touch at 2.

14-’%5%." To express most simply the equations of two
quadfies which touch, take the point of contact O=Je, 0, 0, 1]
ap<d'{'he common tangent-plane z=o. Then the equations of the
~\Quadrics are of the form :
4 ax?+by*+c3® - 2 fyx+ 2gsn + 2hxy + 22w =o.
Since the quadrics do not have a common generating line the
pairs of generating lines in the common tangent-plane are distinct
and there is a unique pair of lines which are harmonic conjugates
with regard to each pair, Choosing these as axes of x and J»
h=o=1F'.We can then choose the vertex 4= [1, o, 0, 0] of the
- tetrahedron of reference so that its polar-planes with respect to
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the two quadrics coincide, and as this plane must pass through
(B we can choose it as the plane x=o0. Then g=o=g"
B=Jo, 1, 0, o] can similarly be chosen so that its polar-plane
with respect to each is y=o. Then f=o0=f". The line OC is then
determined as the interscction of these planes, and C may be
chosen arbitrarily, as also the scales on the three axes. The
equations of the two quadrics can thus be written
U=ax®+by*+cz®+22w=0,
Uzdx+byr+ st +azw=o0. O\
In the linear system /= AL/’ =o there are three cones, the vdlues
of the parameter being A=a/a’, bfb’ and 1 (twice}. A=agives
(a=a)s+ (p=B)g (e= )30 (D
_ R\ .
Adjusting the scales on the three axes we may reduce this

equation to K2yt —sz¥=o0. o\

Frecdom-equations for this are px=2f,py=t*—1, ps=1+1.
* Substituting in U we get for w a bighadratic in ¢ divided by
2{t*+1). Hence putting p=3p"/(£* 1) we have
pa=4t(P+1), ply=2{1), plz=2(r+1)°
and p'w=a quartic\polynomial in .

The nodal quartic curyé is therefore rational.

14716. The common tangent-plane =0 cuts the cone with
vertex O in the tw:&s (a—a')x%+{b—b")y*=o, which are the
tangents to the quartic curve at the double-point. They may be
real or ima inér\y. If they are coincident the two quadrics have
stationafy‘{anthct, and the quartic curve has a cusp. This will be

 the casxﬁf'f}:b'. We cannot, however, now take f=/", for then
the edne with vertex O would break up into two planes and the
_cdiye of intersection would reduce to two conics, Keeping
\g=g =0, the equations of two quadrics of the system are
U= axt+by? + x4+ 2fya+220=0,
U =g/ x?+ by?+ 22+ 2f yz + 23w =0,
and the cone with vertex O is
(a—a)x?+(c—c)E+a(f—flyzs=0.
With scales adjusted this can be simplified to
at+zt—2ys=0.
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Freedom-equations of this are pr=2f, py=14-1, py=2, and
substituting in U we obtain again for = a quartic polynomial
in £ of the form pw=ptt+ g2+ 7.

14-717. Through a quartic curve of the first species there pass
2 linear system of quadrics, of which the curve forms the base.
All the generating lines of these quadrics are bisecants, or chords
of the curve, and conversely every bisccant of the curve is,
generating line of a quadric of the systemn, All the bisecants fosm
a congruence. Since there is just onc quadric of the,&ystem
through a given point, and through this point ther€ ate two
generators of the quadric, there are two bisecanty izh;‘ough any
arbitrary point which does not lie on the curve,, #Is0 since there
are three quadrics which touch a given plane; .mg\cl each is met by
the plane in two generators, there are six bas¢tants in any plane.
The congruence of bisecants is therefogc\}f' order 2 and class 6.
This agrees with the general resultdmg 21,

If the curve is projected from an &tbitrary point, the projecting
lines form 4 quartic cone and_the projection is a plane quartic .
curve with just two double-points. This is not a rational curve,
since a rational plane quartichas three double-points. But when
the space-quartic has jtself a double-point, its projection has
three double-pointscand is rational.

From the equations in 14-52 we find the rank and class of the
quartic curves Of,the First Species to be as follows:

PN\Y;

P . : noF m

| ']Qli} general elliptic quartic curve 4 8 12
:%Nodal quattic ... ... ... 4 6 6
28" Cuspidal quartic... e P 4

N

\”\3 " Ex. x. Show that the gencral quartic curve of the first species 18

uniquely determined by eight arbitrary points, of which no threc ate
collinear, and no five lie in one plane, '

Ex, 2. Show that through eight associated points on a quadric
su1_-face there pass z linear system of quartic curves, one through each
point on the surface, and two touching each generating line.

E%x. 3. Show that all chords of a given quartic which cut a given
chord are generators of one quadric.
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14-718. 'The figure which is dual to the quartic curve of inter-
section of two quadrics is the assemblage of common tangent-
planes of two quadrics. This is a developable, an important
example of which being the focal developable determined by a
given quadric and the circle at infinity. It is in general of class 4,
order 12, and rank 8. To a bisecant of the quartic curve corre-
sponds a line lying in two common tangent-plancs, a “line-in-
two-planes” or axss. The axes form a congruence of order 6
and class 2; in each plane there are two axes and through
any point there are six axes, and these axes are all generfa,t\(')}s.\
of quadrics of the same linear tangential system., In the'ease
of the focal developable the axes are the focal axes (€221
and 12-81). . m'\'\..

1472, Space-quartics of the Second Species:”

A space-quarti¢ of the Second Species :is}tﬁe partial inter-
scction of a quadric surface with a qut?ic’ “surface when the
residual consists either of two skew linedr of a line which counts
double on the cubic surface. N

14-721. Let Ubea quadric.sﬁj:face and K a quartic curve of
this species lying on it and therefore such that there is no other
quadric but U which copidins the curve. If the curve is pro-
jected from a point O pft itself, projecting lines form a cubic cone
and the plane projv.j,c\ti&l is a cubic curve. In the case of a quartic
of the first species.without double-point this cubic curve has no.
double-pointPafid the cubic cone has no double-line; the quadric
and the cgue have two intersecting generators (a degenerate
conic) i ‘¢émmon. If the quartic curve (still of first species) has
a double*point or a cusp, the cone has a double-line or a cuspidal
edge passing through O, but this is not a generating line of the

“quiEdric; the quadric and the cone have still only two single
Generators common. If, however, the cubic cone has a double-
line and this coincides with a generator of the quadrzc, the pro-
jection from O of the quartic curve of intersection is a rational
cubic, and the quartic curve is rational. T*his is also the case for
the intersection of a quadric surface with any cubic surface
which has a double-line coinciding with a generator of the
quadrie.

QY
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14722, Again, consider a quadric and a cubic surface with
two non-intersecting lines Aand A’ in common, belonging there-
fore to the same A-set of generators of the quadric. Every other
generator of the quadric cuts the cubic surface in three points,
and in the case of the A-generators these three points all belong
to the quartic curve. But a g-generator cuts both A and X', and
therefore cuts the quartic curve in just on¢ point. On a given
quadric surface there are therefore two distinet systems of quartic
curves of the second species : one cutting each of the A- gamrators
in three points and cach of the p-generators in onc prﬁ‘nt the
othercutting the gu-gencratorsinthree pointsand the A—*rcﬂcrators
in one point. _ R N

14-723. A quartic curve of the second sfcbics has thus a
single infinity of trisecants, which are theMdcncrators of one
system of the quadric surface which cgntains the curve. There.
can be no trisecants which are not gé'nerators of this quadric
since 4 line cannot cut a quadric jnéhree points. Through each
point on the curve passes one tnse(,ant, and therefore the pro-
iection of the curve from any,point on itself is a cubic having one
double-point and therefore is rational,

A ‘quartic curve of .the second species can have no actual
deouble-point, for if 1t\had the projection from an arbitrary point
on the curve w @ be a cubic with two double- pomtq and the
curve would d.eXnerate Further, as the curve is rational, its
projectiorn, frorn an arbitrary. point is a plane quartic with three
double-p\mts Hence through an arbitrary point there pass three
bisecapist

8724, Parametric equations of the general quartic curve of
t‘he second species can always be expressed by first forming
N C parametric equations of the quadric which contains the curve in
vV terms of two parameters A and y such that the generators are
expressed by A=const. and u=const., and then connecting A, #

by a (3, 1} relation of the form

p(anh3+3a1?\2+3a2)t+a3)+(b0)(3+3bl)‘2+ 30sA+b5) =0
14-725. Three essentially different types are found according

to the existence of stationary or inflexional tangents, i.e. tangents
which meet the curve in three coincident points. 'The cubic curve
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and the quartics of the first species, since they have no trisecants,
can have no inflexional tangents. The conditions that the cubic
equation in A (14724} should have three equal roots are

l{lvﬂ] + bl _ '!Lag + b‘z _ ‘li.ag + 53
g tby  pai by pay by

"T'hese give two quadratics in g, and eliminating u we find a rela-
tion connecting the coefficients. In general therefore (First
Type) there are no stationary tangents. If the conditiong rs\
satigflied there is {Second Type) one stationary tangent carre*
sponding to the common root of the two quadratlcs in g If
further these two quadratics have both their reots i’ common
we have (Third Type) two stationary tangents, ,\‘

'I'he class and rank of the three types of quartieswof the Second

Species are therefore as follows: Y
First Type (no inflexions) AN 4 606
Second Type (one inflexion) {)7.. 4 6 3
“I'hird "Type (two inﬂexioné)l w 4 6 4

14-8., Number of mtersect;ons of two curves lying on a
quadric snrface, "

Let €, denote a A- g@nbrator, C,' a u-generator, Cya conic, Cj
a cubic which cuts@A-generator in one point and a p-generator
in two points, CyPacubic of the other system, C, a quartic of the
first species, K4 quartic of the second spcczes which cuts a
A- gencrator«{n one point and a p-generator in three points, Ky’
a quarti¢ Isf the other system. Then the following table shows
the nu er of intersections of each pair*®:

’\ » Cl C‘Il‘I C2 C3 C3’ C4 K4 Kl'
NG o g 1 1 2 2 1 3
Y% c, o 1 2 1 2 3 1
€2 2 3 3 4 4 4

Cy 4 5 6 5 7

Cy' 4 6 7 3

C, 8 8 8

K, 6 10

* The general result, from another point of view, is given in 1495, Ex. 6.
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Some of these results have been already proved (see 14-641,
14671, 14711, 14-722). The others can be left as an exercise to
the reader. The method can be illustrated in one case; for
example, to prove that {K, K,V =10, Let I/ be the given quadric,
¢ and ()’ cubic surfaces containing K, and K’ respectively. Then
the intersection of &/ and { consists of K, and two generators
€y’ and Ky'; the intersection of U and ' consists of K and two
generators () and K;. The three surfaces U, O, ' hage™
2x3X3=18 points in common, and we can write symbokieally

WO = 18= (KKt H{K O+ (KL K+ {CKY O

O {CYK+H KK+ KCy LYK

But each of the last eight terms=r1, henee {Ki@{}z 10.

149, As an example of a quartic curve ofthe second species
we shall consider the line of striction of ajguadric surface. Two
gencrators of the same system haye & “inique common per-
pendicular, and in the limiting casehwhen the generators come
to coincide, the foot of the comgion perpendicular is a unique
point on the generator, The }06}13 of this point is called the line
of striction for this system ef generators.

- Consider the hyperboloid
,@3/3?2 +y2/ba—z2/cz=w2.
Tts freedom-equations are
pxla=1duy py/b=A+p, pzfe=1+4Au, pw=A—p,

A :
and the gefgrating lines correspond to A= const. and p=const.
'The equations of the generator A= const, are

O ! xja—zfc=X(w—y/b),
o Afatafd)~w+ b,
\'\,.ﬁnd its direction-cosines are proportional to
a(1—2A%), 2B}, ¢(1+2A2),
The direction-cosines of the line joining the points (A, p) and
(A+484, u+3p) are proportional to
| allr—pHo (-3,
25(#3)1—-)18@),
{14 )8 — (14228,
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The condition that this line should be perpendicular to the
generator A is

a*(x =A% {(1 — p?) A — (x =A%) B} + 402 A (n3A - AB )

RN (14 2SN~ (1429 3y} =o.

Expressing also the condition that it should be perpendicular to
the generator A+ 82, and subtracting, we obtain

— a2 A{(1 — ) A= (1 A%) S} + 282 (e SA ~ Ady) :

' +e2A{(1 + ) A - (1+ A Bu}=o.
Eliminating 8A and Su between the last two equations we obtain,
after cancelling the factor A—p, O\

a1 = A5 (1 — M)+ 2D A+ )+ e 2 (1 AD (1 + M) =0,
or pA(AZ+ A)+ AN+ 1=0, \‘
where A=(@b24c?—a )@ +cF) !
'Thus we have A, p connected by a (3, 1) relatim'g\,\rind the locus
18 a quartic curve of the second species"ﬁhich cuts every
A-generator in one peint and every p-g@n’e:ra'tor in three potnts,
Substituting for x in terms of A in the freédom-equations of the
quadric we obtain the parametric gquations of the curve
prfa=(1+ A+ D)py/b=A4—1,
prle=(z —A)A(Afg 1), pw=A+24X+1.
T'he curve passes throughthe vertices of the principal sections of
the quadric. In certzin cases the line of striction degenerates.

Ex, 1. Show tha’t\'fc:r the paraboloid x%/a® —2{b%=zw the lines
of striction are the-parabolas in which the surface is cut by the two
planes 5% + a# 1o,

Fx. 2. &how that for the paraboloid x2—3=sw the lines of
strictionare the two generating lines in }:vhlch the s:urface is cut by
th&p}aﬁe 2=¢ and the two lines at infinity w=o0, x*=3",

4 3. Show that for a hyperboloid of revolution the two lines of
striction coincide with the principal section (a circle).

Ex. 4. Show that the curve of striction of the quadric

as?+ byt exf=1

2N
N

has in general no inflexion, but has two inflexions if

(za—b—c) (2b—c—a) (2e—a—b)=0,

S5AG 20
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14-95. EXAMPLES.

1. Show that parametric equations of the cubic curve which
passes through the vertices of the tetrahedron of reference and
the points [1, 1, 1, z] and [a, b, ¢, d] are

¥iviriw=af(t—a): bi(t—b) :ci(t—c): d/(t—4).

2. Tind the equations of the six cones which pass through the
six points [1, o, ¢, o}, [o, 1, o, ©], [o, o, 1, 0], [0, 0, 0,
[1, 1, 1, 1], [, &, ¢, d] and have one of these points as vertex; ahd

A
show that they have one cubic curve in common, R ™

3. Prove that a quadric surface can be drawn thzoy gh a cubic
curve in space to contain two assigned chords ofithe’ curve,

Show thatif 4, B, C, 4’, B’, €’ be six a%rghed points of the
cubic, the three quadrics containing the cuwre'and, respectively,
the three pairs of chords 44’, BC': ; BBLNCA'; CC, A, have
all a common generator, P SN Math, rip. 10, 1915.)

4. Show that the problem of finding a polygon of 7 sides
whose corners lie on a twisted cubic curve and whose sides
belong to a linear complex dsiporistic.  (Math, ‘I'rip. 11, 1914.)

5. Prove that any four i:ioi'nts on a twisted cubic curve and the
osculating planes at the pounts are the vertices and faces of two
tetrahedra each f\whlch 1s inscribed in' the other.

A variable tgtrahedron has its vertices on a cubic. The cubic
is given by, equatmnb x/t?=y/t=2/i—w, and the parameters of
the verticés W o= o, where # and v are quartics in ¢ and A 18
variable, {8how that the faces of the tetrahedron are osculating
plane\\ of another cubic curve and that the tetrahedron is self-
poler with respect to a fixed quadric.  (Math. Trip. IL, 1914.)

D 6%, If the quadric xw—yz=o0 is represented by the para-
metric equations x:y:z:iw=Aw:A: p: 1, show that an alge
braic equation ¢ (A, w)=o0 in A, g, of degree pindand gmp
(p+ g=n) represents a curve, to be denoted by (p, g), lying on
the quadric and having the following properties:

(1) Itis met by an arbitrary plane in # points, and 18 therefore
of order #,

* See Cayley, Coll. Math. Papers., vol. v, pp. 7o-2.
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(i1} It meets every A-generator in ¢ points and every p-gener-
ator in p points. :

(iif) For a given value of n there are, according as # is even or
odd, in or }(n— 1) essentially different species of curves without

singularities.

(ivy If p=g show, by substituting A=yfw, p=gz/w in the
equation ${A, p) =0, that the curve 1s the complete intersection
of the quadric with a surface of order p,

(v) If p> g show that we can derive from the cquation G

Ny

w$ (A, 1) [ 1) =0,

 {

where f{p, 1} is any polynomial in u:1 of degree 2>y, by
substituting for A, p in terms of the coordinates, an "é&uation of
the form Pf{x, y)+Qf(z, w)=0, where P and\@"are homo-
* geneous polynomials in x, ¥, 2, w of degree g3and deduce that
the curve {p, g) is the partial intersectionzofithe quadric and a
surface of order p, the remaining interséctibn consisting of p—¢
p~generators which may be arbitrarilyiselected.

{vi) Show that the equation ‘¥ (jl, w)=0 represents in the
(A, n)-plane a curve passing p times through the point [o, 1] and
g times through the point fTy6]. Deduce that two cyrves’(p, ?)
and {p", ¢} on the %{&ric intersect one another in pg’ +p'q
- points, N
(vii) From the(@umber of constants in the equation

~‘\“ N —
30, w)=o

show tllqt\\e\é{lrve (p, g) on a quadric is determined by pg-+p+¢
pointswen'the quadric. :

(}1.1\i) If the quadric has no real generating lines show that the
ohly real curves which lie upon it are curves of even order, of the
type (P, P)- '

7. Show that the coordinates of any point on the developab‘le,
which is the envelope of the polar-planes Qf a fixed point
[, ¥, '] with respect to quadrics confocal with

aa+y¥b+22e=1,

20-2
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may be written in the form

I T SN R0\ o NP eV Cah
(a—b){la—c)’ (b—ayb—c)’ {e—a)(c—hy’
where A, p are parameters. Show that the cquation A=const,
defines a generator, and that the equation u=const. definesa
parabola, which together with a gencrator makes up the com-
plete intersection of the surface by the polar-plane with respect
to the confocal of parameter u, (Trinity, 14

8. Show that the constant-number of a conic in sp'glé\éhﬁS; of
a space-cubic 12; of a quartic curve of the first Sp{:n’,\ix% 16,
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CHAPTER XV
INVARIANTS OF A PAIR OF QUADRICS

151, We have seen that a single quadric has only one pro-
jective invariant, the discriminant A, whose vanishing is the
condition that the quadric should be specialised as a cone. We
now consider a system determined by two quadrics

S=3%a,, %% < )
and S'=%La, %% s O
In the linear system : '..fw‘:
- AS+5' =0 R4
we have seen that there are in general four cones, ¢afrésponding
to the roots of the equation Y,

Adgo+ Ao+« Adigy+dgs’ J:o\ &

AdgyF Gy <o )‘a33+§1§3" |
This is a quartic equation in A, ar}g:k i':g;e’ shall write it in the form
AQ)=AN+OX RO +ON+4" =0

A and A’ are the discriminanfof S and S, of the fourth degree
in the respective coefﬁci,eﬁ%; ®, ®, @ are functions of the co-
efficients of both S and.S’, of degrees 3 and 1, 2 and 2, 1 and 3
respectively.

if the quadrigs‘ate referred to any othel_‘ tetrahedron of re-
ference, i.e. ifptheir equations are subjected to a linear trans-
fOfmatiOllQHé “values of X for which AS+.S5"=o0 represents a
cone willirémain the same, provided the cocfficients of S and S’
are nx{f shultiplied separately by different factors. The roots of
'{é‘iqdartic equation are therefore unaltered, and therefore the
ratios of the coefficients are invariants.

But if M is the modulus of the transformation it has been
shown that the discriminant A is transformed into 4;, wherg

A =M2A,

and since .S has been subjected to the same transformation

Ay =M.
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Hence also &, =020, ®,=M2D, 0, =Ar0"

A and A’ are the projective invariants of .S and .5’ separately;
0, @, O are simultaneous invariants of the two quadrics,

15-11, The vanishing of one of these simultancous invari-
ants represents some projective relationship between the two
quadrics, By a particular choice of the frame of reference the
forms of these invariants may be simplified and thicir meanings
arrived at.

Choose a tetrahedron of reference self-polar with resfiesf to
&', and a suitable unit-point. Then we can write '

N

e

S'=xt4 42 L 224 wl=o, N
S=ax?+ by? + cz® + duw + 2 fys + 2gzx + 2l f
+ 2pXT -+ I 2 2% =0,
.The invariants then bccome N
'=a+b+c+d, \
®'=(be— )+ (ca —g9) + (ab - (ad —p?)
A\ + (bd— g?) + (ed —7%),

, S

©@ =4+B+C+D,

where 4 is the cofactor oft in the determinant A,

152, If Sis circumgeribed about the tetrahedron of reference,
a, b, ¢, d, all va i{h, ‘and therefore @' =o; that is, if there &5 &
tetrahedron insgribed in the quadric S and self-polar with respect
to the quadrie,§, the projective invariant &’ =o. _ )

This regtit’is somewhat remarkable, for we might expect It
to be po\sgiﬁlc always to find a tetrahedron self-polar with respect
to OQQ *quadric and inscribed in another, without any relation
whatever between the two quadrics. For the number of con-

o~ditions required in order that a given tetrahedron should be self-

polar with respect to a given quadric is 6, each pair of vertices
being conjugate; and the number of conditions required in ord?f
that a given tetrahedron should be inscribed in a given quadric
is 4. But a tetrahedron can in general be constructed to satisfy
twelve conditions since each vertex has three degrees of freedom.
What we should expect then is that there should be a double
mfinity of tetrahedra satisfying the given conditions. Actually n0
‘tetrahedron at all exists uniess the two quadrics are related in a
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particular way. We shall show now, conversely, that if this con-
dition, ®" =0, is satisfied there is a triple infinity of such tetra-
hedra. A problem of this sort is said to be poristic,

15-21. Assuming the condition @’ =0, choose the tetrahedron
of reference with one vertex 4 on S. The polar-plane of A with
respect to S” cuts S in a conic; choose the second vertex B on
this conic, The polar-line of AR with respect to 8’ cuts Sin two
points; choose one of these as the third vertex C. Then choose
D as the fourth vertex of the self-polar tetrahedron with respedt,
to S'. Three of its vertices 4, B, C lie on S, and therefere
a=0, b=0, c=0; and since ®’' =0 it follows that a‘='Q'jas"well,
hence D also fies on S. a3

Hence @' =0 is the necessary and sufficient congiifsbh that there
should be one tetrahedron (and therefore a triplenfinity of tetra-
hedra) inscribed in S and self-polar with respetto S'.

If capital letters denote the cofactors{df the corresponding
small letters in the determinant A’, thie tangential equation of §’
in the general case is o)

= At 2F bk 2P et . =0,
and E‘)'ERA’-}-...+2fR:~B::..+2PP’+---s
i.e. ®is linear in-the coefficients of § and 2. Following Baker,
we say that the qu;adr}c locus § is outpolar to the quadric
envelope X, S being circumscribed to a tetrahedron which is
self-polar with réspect to Z'. '

15-211. Agr}iﬂ, if we choose a tetrahedron of reference self-
polar witk{}'}épect to S, so that £, g, 4, p, ¢, 7 all vanish, ©’ will
Vanish\'\f~ﬂ', B’, €', D' all vanish, ie. if the tetrahedron is
circuinstribed about I'; and conversely, We say that the quadric
eayelope ' is inpolar* to the quadric locus S, %’ being inscribed

"2 tetrahedron which is self-polar with respect to 5. Hence
© =0 is also the necessary and sufficient condition that there should
be one tetrahedron (and therefore a triple infinity of tetrahedra)
circumscribed to X' and self-polar with respect to S.

. Since ©’ is linear in the coefficients of Sand X it follows that
if two quadrics .S, and S, are both outpolar to 2 all quadrics of
the linear system S, +AS, are outpolar to X',

# The term apolar is also used for both cutpolar and inpolar,
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15212, Ex. 1. The vertices of two self-polar tetrahedra of the same
quadric form eight associated points.

We may take one of the tetrahedra as frame of reference and the
equation of the quadric

S=Ex+y? et ut=o.
Let 8'=a'a?+ ' v 4 e 2% +d' w2 + ... be any quadric passing through -
the vertices of the second tetrahedron and through three vertices
4, B, C of the first. Then since the second tetrahedron is self-polar
with respect to § and is inscribed in .7, $* is outpolar to S and there-
fore @ =o, i.e. ,\:\

. &+ +d =o. NS *
Buta'=0,b =0,and ¢’ = o, therefore & =0 and & pasgesialso through
the fourth vertex D. Hence every quadric whi cli\passes through
seven of the vertices passes also through the eighth’

L. 2, Conversely, if eight associated pointsaye divided in any way
indo wo sets, the two sets of four paints formelf-polar teirahedra with
respect to the same quadric. S V

Choose the four points 4, B, CoB.as frame of reference. Any
quadric for which ABCD is self—’pplar’ is represented by

SEach-{-l)j?-f-“cf +dut =0,

The ratios of the coefficiedts will be determined by the three con-
ditions that 4', B’, C" are mutually conjugate. Let 1, be the pole of
the plane 4'B'C” with Yespect to S when thus determined. Then
ABCD and A'BYYBy are both self-polar with respect to S, hence
they form a set oinght associated points. But since 4BCDA'B'C'D
also form such® $et and since the eighth point is uniquely determined

by the otherégven, D’ coincides with D,.
15-252;'\T0 determine the meaning of the vamshing of ® we
notdthat O=o if all the six terms (bc—f2), ..., (ad—p?), -
vahish, But bc—f%=0 is the condition that the edge y=0=3
:\'.of"the tetrahedron of reference should touch S, and similarly
\"\} “for the other conditions. Hence ®=o when there s a tetra-
hedron self-polar with respect to S’ and having all dts edges

touching S

To construct a tetrahedron, self-polar with respect to oné
‘quadric and having its edges touching another quadric, requires
twelve conditions, just the right number to determinc a tetra-
hedron in general, but the above result shows that ®=0 is
- necessary condition. Hence no tetrahedron exists satisfying the
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given conditions unless the quadrics are suitably related, and
then there will be a single infinity. As ® is symmetrical as re-
gards the coeflicients of § and 5’ it follows that if ® =0 there
witl be an infinity of tetrahedra self-polar with respect to § and
having all their edges touching 57

15-81. The invariant @ involves the coefficients of the line-
equations of the two quadrics, The poeint-equation of a quadric
being \

S=XYa, x,.4,=0, O\
N\ ©

¥ =SS5 (a, a5 — @) Dabins .

the iine-equation 1s

Changing the nqtation. so that ) \\ ’
S=ax®+ ... +2fyz+ .. Fopewt ag =0,

and writing the line-coordinates xj\\':

7
W

Pu=t, Py =Uay BT
Pu=%, Pu= Uy S P = Vs
we find that the line-equation i&ahomogeneous quadratic in the
Six variables oy, vu.y T1y .0y WZ

Y=epud+ o+ CABI+ oo HRath O+ o + K v+ ..
+ 2ep U, 3+'\f.».3|— 2C5 Tyt oo F 2hoity Tyt oo
+2K,3¢ as\-r vee =0,

%

where <&

=I5y Cy=ad—ph,  ka=Ku=gg—hn,
cm\\%‘g]z —af, Cu=fd—qr, hkn=gr—cp, Kyn= bp— Ny,
thg»bjther expressions being written down by the simultaneous
. fermutations (123), (abe), (foh), (p47); corresponding small and
AN kapital letters represent complementary minors of the de-
terminant A.
Then the invariant ® of two quadrics is the bilinear ex-
pression
D=c, Cp" + ...+k11K11'+---- 205 Co’ + oot 2R Kig 4100
e, Oyt o R Kt + 20" Cog+ oo :
2k Ko+ vens
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15-32. Invariants for the reciprocal system,
If we take the linear tangential system of quadrics

AL+3 =0,
where EEAf?‘—f-...+2F’Y}€+...+2I)§w+...‘——-0,
we obtain the discriminant
VA = ASA - AZOA3 + AN DAZ 4 A0 +473;

for the determinant A
V=|4 H G Pl=ay, D
H B F @ A
G F C R ON
P QORD \«}\"
as is found by multiplying together V. A
Also \
BFQ—'ahgp IOOO{I
FCR ‘hbfg |HBF Q'
[QRD gfcr GF CR:
&9 7d| . PORD|
-.-|aooo'—A3
O hAoo
.\\\" go Ao
.:\ ' poo Al
and \QJMB HZ)_‘akopllAHGP;
~C hbfgl|lHBF O]
:i\“ gfcr-ooxo!
: :”\.:’5’0 pqrdMOOOI
_\'">~' = Ao gp .|~A2(cd—r2).
oﬂqu
00 ¢7 |
oo rd
Hence BFQ!= %a, |AH( =A| ¢ 7 |, ete
|7 d |

F CR | H R
onp
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It

BO—F? =y, AD—P? =Ty, GQ—HR=xy =Ky,

GH— AF= 1y, FD—QR=Ty, GR— CP=rky, BP— HO=Ky,
then - AA D=y +ete.

15-33. Absolute invariants;

The five invariants A, ©, ©, @', A’ are relative, To form an
absclute invariant it is necessary to take a function of these which
is not only of zero dimensions in the five invariants, 1e. invol\{es\
only their ratios, but is also of zero dimensions in the coefﬁcient\s"~
of both quadrics. Such expressions, of the form A*@%®7, calr'be
formed with any three of the five invariants. To détermine
%, B, v we express that the dimensions in the coeffidiénts of the
two quadrics are each zero. Hence, for this exafn}i’le, we have
4x+3B+2y=0 and B+2y=o0, which givgalso a+f+y=o.
Hence o:f8:y=—1:2:-1. Ten absoly ¢Gnvariants such as
this can be obtained, but only three ofthiese are independent.
H we write '

Q!

g . al® "
PE(%-;,_ QE%, Q’EE—,(—D,
we can eliminate any two ef ‘the quantities A, ©, @, @, A" be-
tween these equations.;“&‘us any invariant equation involving
the five invariants r'\‘bé expressed in terms of P, Q, Q.

It is proved fupthet in text-books on invariant-theory* that
the five invariagits form a complete syster: in the sense that any
polynomial’s{multaneous invariant of the two quadrics can be
expx_‘ess%"iﬁ'terms of these.

#

1534\ A general procedure in finding an invariant equation
cortesponding to a projective relationship between two quadrics
”i‘&; %6 follows. First choose a convenient frame of reference so as
\[o simplify the equations of the quadrics. Express ihe five in-
variants and form P, Q, ', or some other set of independent
absolute invariants. If a single invariant equation exists, P, O,
(" can be expressed in terms of two variable pararpeters alone,
and by eliminating thesc we getan equation connecting the three,

¥ See, for example, Turnbull, The theory of determinants, matrices, and
invariants (London: Blackie, 1928), p. 304+
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which can then be transformed to a homogencous equation in
the five invariants. '

Ex. 1. Condition that there should be a tetrahedron inscribed in
one quadric § and having two palrs of opposite edges as generators
of another quadric 8.

Taking the tetrahedron as frame of refercnce we have

=2fyr + 2g3x 4 2hxy + 2pxw + 2gyw + 2raw =0,

St=of'yz+2pvw=o. ~
We find A =fepe, O =ofp (fp4fp7), A\
D=(fp' +fPF+2f P (fo-gg—hr), N7
O=2 (' +/0) (fp—gg—hr).
Write [V =, fp'+fp=B, fo—ga— k?—y, :

then A =a?, & =208, O=F+20y, G}’\z,ﬁy

Without using the absolute invariants we geb'that as thcse four
expressions are homogeneous in o, 8, y wédn eliminate the latter
and obtain an equation hemogeneous ind,"®’, ®, @, The result is

) 3

JANO'D =0 £N00,

- Ex. 2. Condition that there shonld be a tetrahedron whose six
edges touch two given quadrigsh™s

We have here the exact nlrmber of conditions required to deter-
mine a tetrahedron, but ~we shall find that the problem is again
poristic.

Taking the tetr };@dron as frame of reference we find that the
coefficients of the gﬂadnc

IZat . tofyst L taprwt.. =
satisfy the si‘x~\equations
~& be—f2=0, ad—p?=o0, elc.

Wnt@ a=0, b=8% c=9% d=8, we have f = + By, etc. There are
blxty-four possible combinations of sign, but it can be vertfied that
7the only ones which do not make A vanish are that in which the signs
\'dre all negative and those obtained from this by changmg the signs of
o, B, v, ord. It is therefore quite general to take the s-ugns all negative,
Choose the other quadric 5 similarly with 27, 8, 97, &' instead of

%, B, v,6. Then we find

= 162805, A= —16aB0y0Y
0= —4T (2580 4 28y o2y 5Y)
0= — 4T (x2By28" + 28y . 2 f'y'5'2),

= —8Za28y. g8,
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If we write o’ =pa, S =gB, ' =ry, 8’ =sand — 40?2262 =k, the
invariants are expressed as homogeneous polynomials in p, g,7, 5.
Then writing p =As, g = us, ¥ =»§, we obtain

Az=gk, Ozk2(EAL1)%, O=kS (S +Aw),

A =gk A 2, O =2kt {(TA+ 1) (Spv + 4w} — 4Auv).
Finally, writing XA+ 1 =21, Spv + Apy =2, Auv=w, we have

A=4k, O=gks?u?, O =4k50%

A'=aksu?, D=8kt (v —m).

‘I'hen we have the absolute invariants '
OO AN =utofe?, QYAN =4 (wo—wlft. I
Eliminating #v/w we have Xy R

D=4 (@O —(AAPE, N

(AN +400 —D22=64ANB87

15:35. Contact of quadrics. \ \

The complete conditions for the, various sorts of contact of
two quadrics require invariant fattors, as we have seen in 138,
but certain conditions can be gXpressed in terms of the invariants
A, ®, O, &, A" These arethe conditions which depend only on
equalities among the rogisiof the quartic equation A(A}=o. Let
us write this equatiofiin the form

A(Q)2gA 4 A%+ 6a, A2+ 4a;A+ a,=o0.
Then it may Qéiff;ansformed by the substitution gyA+ @ = to

the form 4 .
OV pi+ 6Hp+4Gp+ (a1 - 3HY) =0,

or rationalising

wheré, He=aya,— a7,
e 2
A G=2a*-3a0 @+ 44" 4y
. J
N/ - 2
\} I Ea0ﬂ4_4a163+302 .

15-351. The condition for simple contact (denoted by [z11]In
invariant-factor notation) is that two roots of the equation
A(\)=o should be equal. This is expressed by the vanishing of
the discriminant 78— 27]%=0, where

J=apaay— a8+ 2y Ay By — 20— 055
This discriminant is called a tact-invariant,
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The same condition is satisfied in the casc of double contact
[(11)11], and the two cases have to be distinguished by con-
sidering the rank of the matrix [A(W)]. In the case of double
contact the curve of intersection of the two quadrics has two
double-points and breaks up into two conics. For some value
of A, therefore, AS + §" = o represents two planes. The conditions
for this are that for some value of A the matrix [-A(A)] should be _
of rank 2, '

N

15-352. The conditions for three equal roots A, are F =0, =)

This happens in the cases of ring-contact and the two fosms of
stationary contact. In the first form of stationary cpn‘tzi’ct fa1],
when the curve of intersection is a cuspidal quartié{the matrix
[A(A)] is of rank 3; when the curve of intersedibh consists of
two conics touching one another [(21)1] the g is of rank 2;
and in the case of ring-contact [(111)1] 11;\‘18\01 rank 1.

15-383. The conditions for two paiss\of equal roots A, and A,
are G=o0, 12H?=q2]. (This con’r.lit'i'o.n is symmectrical; with
G'=o the second condition is equivalent to

2(133—3512@3&,;—'!—&1&42:0.)
In this case the quadrics hdve at least one generator in common.
When the matrices [A (X} and [A(A,)] are both of rank 3 there
Is just one common*generator, the remainder of the curve of
intersection. being 3 space-cubic of which the gencrator is a
bisecant, and 3he’ quadrics have double contact [22). When
[A{A)] is of rank'3 and [A(A)]is of rank 2, there are two common
intersecting) generators and the quadrics have #riple contact
[2 (1)} When [A ()] and [A(A,)] are both of rank 2, the quadrics
hayelfour common generators and have quadruple contact
D)
15-354. The conditions for four equal roots A, are
afty=ay/ay = ayfa, = ayfa.
When {A(Ay)] is of rank 3 the curve of intersection consists of &
space-cubic and a tangent, and the quadrics have stationary cof-
tact at the point of contact [4]. When [A(A,)] is of rank 2, there
are two cases according as A—A, or (A—Ap)? is a factor of each. of
the first minors. In the former case the curve of intersection
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consists of 2 conic and two lines intersecting upon it; the two
quadrics touch at this point [(31)]. In the latter case the base-
curve consists of a double-line and two mutually skew lines both
cutting it; the quadrics touch along the double-line [(22}].
When [A(A)] is of rank 1 the base-curve consists of two inter-
secting double-lines, and the quadrics have contact along them
both [(211)].

Ex, 1, Show that if two quadrxcs have simple contact and the
gencrating lines through the point of contactare harmonic, 90 4A.§ )
in addition to the condition for simple contact.

Ex. 2. In a pencil of quadrlcs having double contact s,hoy.’ that
cach quadric is paired with another, such that the generatmg lines at
either point of contact are harmonic. ..,\‘

1536, In interpreting the meanings of the Mtltaneous in-
variants we have assumed that neither of th,eﬁuadrlcs is a cone.
Let us consider the case in which A'=q, sb\that S’ is a cone, say

S'=at+y" +22=o,
the vertex being D=[o, 0, 0, 1], and. the edges through D forming
a selt-conjugate trihedron. Assnme S to be general
S=axt+ ... +zfyz+ e 2pwE0+ ..
Forming the linear S}’SEE{HISS‘—}—)\S’ =othe discriminant equationis
A(d)= é\M‘AZE (ad—p¥)+AZA +A=o0,
so that @ =d, Q&3 (ad—p?), O=ZA.

G’ =0 whenhe vertex of S lies on S.
The 1nv;{n”ants @ and @ can be interpreted by considering the

tangent\qone T from D to S. This is
T'= d,(aacﬁ-l-by t e+ 2fys +2gax+ 2hxy)—(px+gy+re)i=o.
2\ T and S’ are homogeneous in x, ¥, 3, and with @ =0 represent
%0 conics C and €. We can form the simultaneous invariants
of these two conics. The discriminant equation of the linear
system T'+ AS =0 is '
AN 40N+ O 1+ Ay =0,
where Af=1, O EZ(ad—Pg)_——:@,
0, =5{(bd—g*){cd—rH) —(fd— gr)5=d0,
A, =d2A.
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(The last result is obtained by multiplying together the two
determinants
doo —pllahgpl)
Eodo—q J’zbfq:
lood —r||gfevw
oo 0 1 ragrd

If ®=o0, so that &, =0, the conic € is inpolar to ", Hence.
there is an infinity of trihedra with vertex D, sclf-conjugate with
respect to the cone §’ and having their faces touching the
quadric S. O

If =0, so that ©,"=o0, there is an infinity of t_gih"c'dra with
vertex D, self-conjugate with respect to the cong $%and having
their edges touching the quadric S. “\ '

15-37. Reciprocally, if one of the quadeies* X’ reduces as an
envelope to a conic £ in the plane w=c<i;t tangential equation
referred to a self-polar triangle is N0

E’E§2+ﬁ2ﬁ,éT; 0.
"The general quadric S cuts thjélbiane in a conic C.

The discriminant equatidphfor the linear system S+A% =0
is (cf. 15-32) -

Df‘“+.>{%fﬁ(bc—f2)+wza+as=o,

50 that @' =%q, A'D=S(be—f?), A?@=D.

If ®=0 theplane of the conic ¢’ touches the quadric S.

If ® =0, there is an infinity of triangles in the plane of the
conic self-eonjugate with respect to the conic X’ and circum-
scribggl\\ébout C.

H\®'=o0 there is an infinity of triangles self-conjugatc with.

Jfespect to 7 and inscribed in C,

N Ex1 IS and §” are both cones, not having a common vertex,
show that © =0 is the condition that the vertex of S lies on &', and

if P =c the tangent-planes to the two cones through the line joining
their vertices are harmonie, ’

Ex. 2. 1f &' breaks up into two planes show that ¢ =o is the
condition that the two planes should be conjugate with respect to 5,
and that @ =o is the condition that the line of intersection of the two
planes should touch &,
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Fx. 3. If every quadric of the linear system S+AS =0 is a cone
(not with common vertex) show that all the cones pass through a
fixed conic € and have their vertices on a fixed line / which cuts C.

Ex. 4. If Z+XZ =0 represents a system of conics {not ail in one
plane) show that all the conics lie on a fixed cone € and that their
plancs all pass through a fixed line / which touches C.

15-4. Metrical applications.

A metrical invariant of a quadric is a function of the co-
cficients which is unaltered by an orthogonal transformation.
The orthogonal transformation, equivalent to transformatiafh, ™
from one set of rectangular cartesian coordinates to another,'is
a particular case of the general linear transformation,, and is
characterised by the property that it preserves the cifcle at in-
finity unaltered. \%

15-41. The general linear or projective trgmﬁofmation trans-
forms the point-coordinates (x;) into (YN~

3 O
x = Eﬂlirxr (1=09.1“’ 2, 3):
= P 3

and the inverse transformation BySwhich (x,} are expressed in
terms of (x;") is )
Lx,= X L},x,’ (i=0,1,2,3)

.'l"—\ N . .
where L is the determ}tant of the coeflicients f;;, and L,; is the
cofactor of /. J{amst not vanish.

Ifxy=o0 rep{sécnts the plane at infinity, after the transforma-
tion this becefnes
A T, =0,
In oydqf that the plane at infinity should be unaltered, i.e. re-
~e§e?1ted by x,’ =0 after the transformation, Ly=0, Ly=0,
ggzzo; and as x,'=o is transformed by the inverse transforma-
tion into a,=o0, ly=0, k=0, hy=0. Taking lp=1, so that
x,=1x,", we can take x,= 1, and the equations assume the form
xy =1y, 2 4+ Dodts + Ly %5+ oy
3y’ = Iy Xy Ly Xgt g Xat Do

x3’= 331.?{‘1 + 332x2+333$'3+ 334))
21
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which are the general equations of transformation of cartesian
coordinates, the plane at infinity remaining unaltered. This is
called the general affine transformation.

1542, The circle at infinity is represented by the tangential
equation &2+ £+ £;* =0, and we have to find the equations of
transformation of the plane-coordinates &, £, &,, &..

The plane 2£,x,.=0 is transformed into the plane

X{gr(z}z‘irxi!)}=0 or Zf/x/=o0, 8
Hence ’ ' §J=2wan O\
"\

and, inversely, L3¢g=%1E . ~\*

" Now if 2+ £,2+£,2= 0 is transformed into :f,l’i‘;. 52}2—[—53'3:0
we have O

E 31%2—2122 pIF AL
KN

and ZIZ? 333 EISJH_E!NE;, =0.

But these are just the conditions th‘eLt the transformation should
be orthogonal. N\

15:43. The metrical propéfties of a quadric should therefore,
be expressible in terms «af*the simultaneous invariants of the
quadric and the cirgh€ at infinity considercd as a specialised
quadric. Now takmg the circle at infinity as £2+7°+ =0,
which is equwa‘lc\xt to assuming rectangular cartesian CO-
ordinates, we found in 15-37 the simultaneous invariants

o) D, X(bc—f7), and Zq,

and tifése are exactly the metrical invariants which were found
in
SThese are really simultaneous inveriants of the circle at in-

\ﬁmty Q and the conic at infinity € on the quadric, and we shail
denote them by A,, ©, and @y’

1544, Thus Za=o0, or 6,' =0, is the condition that there
should be an infinity of triangles inscribed in C and self-polar
with respect to . But since two lines are at right angles when
their points atinfinity are conjugate with respect to {2, the quadric
has an infinity of sets of three mutually rectangular generators
cach system (rectangular hyperboloid),
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When Z (bc —f?) =0, or ®,=0, there is an infinity of triangles
circumnscribed about C and self-polar with respect to £, and
hence the asymptotic cone of the quadric has an infinity of sets
of three mutually orthogonal tangent-planes (orthogonal hyper-
baloid). _

15-45. There is another special form of hyperboloid to which
the name orthogonal was given by Schriter, which we shall now
© explain, :

In general a quadric possesses no generating line which is
perpendicular to a plane of circular section, but if it has onq\p’aiﬁ
of parallel generators per- \
pendicular to one set of
circular sections, there is
a pair of parallel generators
perpendicular to the com-
plementary circular sec-
tions also. This follows
fromawell-known theorem
for the conic. Let Q be
the circle at infinity, 4B po
and A'B’ two chords, C~3" Fig. 46
and € their poles. Then(the inscribed quadrangle ABA'B’ and
the circumscribed quédrilateral CDC'D’ formed by the tangents
at A, B, 4", B }}agc\t

he same harmonic triangle, and therefore
AA’, BB', CCLand DD are concurrent. Hence by the converse
of Pascal’s thebfem the six points 44'C'B "‘BC lie on one conic.

Let S bé&any quadric which contains this conic. The _planes
throupdB and A'B’ are complementary planes of circular
section’; the two generators through €' are perpendicular to t’hcf
former, and those through C” to the latter. When .ABCA Bc
\m \i¥ a proper conic and the planes of circu-lar_ section, and the
corresponding generators, arc real, the quadnc is either a co.ne
or a hyperboloid of one sheet. We shall call su}chr quadrics
arthocyclic cones and hyperboloids. If 4B and A'B’ are con-
jugate lines with respect to £2, 80 that AB passes through C and
A’'B’ through C, the conic ABCA'B'C’ reduces to these two
lines, and the quadric s eithera rectangular hyperbolic paraboloid,

a rectangular hyperbolic cylinder, or two orthogonal planes.
Z21-2
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There are no proper circular sections, however, in this case;
a circle reduces to a generating line and a line at infinity lying in
the same plane. In the casc of the parabeloid all the generators of
one system are parallel to one plane and there is one generator
of the other system perpendicular to this plane. In the case of
the cylinder the only generator through C' is the line at infinity
CA’B’, and the property in question fails altogether.
If C denotes the conic at infinity and X' the circle at infinityy\

the invariant equation corresponding to this property is

A\
0y 8-+ 84,28, =44 0, B N\ *
Ny
Ex. 1. Show that the condition that the quadric
2 212
axt+byttext=1 7,

should be orthocyclic is (—a+b+¢c} (a—b+¢) {d -I'-“Lﬁ\-_— cj=o,

Ex. 2. Prove that the locus of a point whase distances from two
skew lines have a constant ratic % (= 1) is arf ¢rthocyclic hyperboloid;
and that if k=1 the locus is a rectangulatshyperbolic paraboloid. 1f
the two lines intersect, the locus is a cafie,"or (if &= 1) two orthogonal
planes. ol ¢

~

Ex, 3. If the squares of the 'd‘is;tz.lﬁcés of a variable point from two
fixed lines satisfy a linear equation, show that the locus iz an ortho-
cyclic quadrie, which maybe an ellipsoid, a hyperboloid ot one or
of two sheets, or a hyperbolic paraboloid. (If the two lines are
conjugate imaginaries\ &he locus may also be an clliptic paraboloid.)

15-46. The theorem in plane geometry which is reciprocal to
the theorem ©h"Which the property of orthocyclic quadrics is
based is tjn{tifAB and A’B’ are the chords of contact of tangents
drawn ftdm any. two points € and C” to a given conic the six
sid@s"%f the two triangles ABC and A'B’C” all touch one conic.
Bkt the given conic be the circle at infinity and let S be any

i ghadric which contains the conic which touches the six lines,

' O the vertex of its asymptotic cone. Then OC and OC * are focal |
lIines of the cone, since the tangent-planes through thesc lines -
touch the absolute. Also OA4RB is a tangent-plane of the cone and
is perpendicular to OC. Hence the cone has the property that
one pair of focal lines are perpendicular to tangent-plancs. In
general a cone does not pessess a focal line which is perpendicular
to a tangent-plane. The above theorem shows that if it possesses
one then it possesses a pair. These focal lines are then generators
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of the reciprocal cone. We shall call such a cone orthofocal, and
likewise any quadric of which it is the asymptotic cone, The
reciprocal cone passes through ABCA'B'C’ and is therefore
orthocyclic. As the equation of the reciprocal cone is
Ax*+ .. +2Fyz+ .. =0,

where A=be—f2 ..., F=gh-4qf, ...,
the condition for an orthofocal cone is

(—A+B+CO)(A-B+C)(A+B—-Cy=o. O\

"T'he relation between the reciprocal cones is brought outgnore
closely by considering their intersections with a sphere\whose
centre is at the vertex, sphero-conies. In the case pfim ortho-
cyclic cone the ratio of the distances of any poingfibn two fixed
intersecting lines is constant. Hence on the sphere we have two
fixed points M, N and a variable point P such/that

sin MOP : sin NOP=«bnst.

For an orthofocal cone we have réciprocally two fixed great
circles on the sphere and a variable great circle which is such
that the ratio of the sines of thétangles which it makes with the
fixed great circles is constagt:s Hence an orthofocal cone with
vertex O can be generated by a plane through O which moves so
that the ratio of the s’i{re}of the angles which it makes with two
fixed planes through'U'is constant.

Fx. Prove that ‘tige envelope of a plane through O which moves so

that the ratio af¢lie sines of the angles which it makes with the two
fixed planeygr=’ & px is constant is

O g () 2k o,

KN\
15751. Contravariants.

d “&1 arbitrary plane £x+ny+{z+ww=o0 cuts a linear system
0f quadrics S+ AS'=o in a linear system of conics C+AC =0.
The projective properties of this system are the same as .thosc
of any system into which it may be projected. Thus if we
eliminate @ between the equation of the plane and the equa-
tion of the quadric we obtain a homogencous equation in
%, ¥, = which represents the projection from the vertex W upon
the plane w=o. The coefficients are expressions of the BCCOI:ld
degree in £, 7, {, w, but linear in the coefficients of the quadric.
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The discriminant of the conic C+ AL =0, which expresses that
the plane (£} should touch the quadric S+AS’== 0, 1s of the form

A+ A SN =o, |

where X, 7, 7, &" are expressions of the second degree in €, 4,
{, w, and of degrees 3, ©0;2, 1; 1, 2; 0, 3 in the cocfficients ofS
and S respectively, Thus if

S=ax?+ by + et +du?, S'=x2+y 20wl O
we find, after dividing by w?, ) \:\
S = bedé® + acdr®+ abdl*+ abcor?, O
7 =(be+bd+cd) 2+ (ac+ ad + cd)n* +((zb—l—(;f3—lrbff)L2
+(~5‘6+ca—rai';)w2,
7 _(b+c+d)§2+(a+c+d)n +{a+ btd)@“é a+b+e)w?
=04+ P+ L '

Z=o0 is the condition that the" planc (¢) should touch the
quadric .S, and is the tangential. equation of S; similarly Z'=0
is the tangential equation of'.S . 7=0is the conditmn that the
conic C should be outpola‘r to the conic C”, and is the tang(,ntlal
equation of a quadric projectively associated with the two given
quadrics, Similarly =0 is the tangential equation of a quadric
which is the env{iope of planes cutting § and 5" in conics C
and C” such thas,C” is outpolar to C. These envelopes, which are
thus associatéd with S and &, are called simultancous contra-
variants, 'e.f -8 and §’. Any equation homogeneous in X, 7, 7', 2,
and\ﬁa‘lmng the invariants of the two quadrics, homogeneous
in ghe' coeflicients of both quadrics, is a simultancous contra-

r \vamant and represents some envelope projectively associated

PN

“Avith the two quadrics.

-15:52. Tangential equation of the curve of intersection of
two quadrics,

As an example let us find the cendition that the plane'(f)
should contain a tangent to the curve of intersection (S57) of
the two quadrics. The four points of intersection of the conics
C and C’ are the points in which the plane (£) cuts the curve
(S87). If C and € have simple contact the plane (£) contans 4



xv] INVARIANTS OF A PAIR OF QUADRICS 327

tangent-line of {SS87). The condition for this, which is the dis-
criminant of the cubic

4+ 7A+ AT N =0,
viz. (9XL — 77" =4 (327 — 5 (3T 7= 'Y,
is therefore the tangential equation of the quartic curve (S5,
an equation of the eighth degree in (¢} and of the sixth degree in
the coefficients of each of the quadrics. ' ',\
Ex. Show that the osculating planes of the curve of intersection

of the two quadrics satisfy the equations - 28 N\
'\

3o’ =7ty 3=t « \

el
N

15-53. Covariants. R
~ Reciprocally, the tangent-cones from an a.rbltmby pmnt (%)
to a linear tangential system of quadrics X FAF=o0 form a
linear system which is projectively the same. {kthat represented
by the equation w=o0 together with the eguatlon obtained by
¢liminating w between the equation of thie-point £+ ... =0 and
the tangentlal equation of the quadrrc We thus get an equatlon
K+aK'=o1n & 7, {. Taking thetanomcal forms

' T = bedE2 + acdn? + abd(® X abcwa =2+t wh,
we find, after-dividing by@#*, the equation
A28 @TM ATA+ARS ¥ =0,
where »S Eaxt+ byt ca?4-dw’,
DT =a(b+ e+ D+
o T'=a(betbd+ed)stt o
. ’\\C\’“ S =4yttt
A2SRAT, A'TY, A28 are of degrees 9, 03 6, 3; 3, 6; 0, g re-
-8 cbm ely in the coefficients of S and 5",
SUS, T, T", § are covariants of the two quadrics, S and §' being
of course just the quadrics themselves.

Ex. Show that the point-equation of the mrcumdevelopable of

the two quadrics is
(GAN'SS — TT"Y =4 (30'ST' - T%) BAS'T—T"%),
and degree 1o in the coefficients

an equation of degree 8 in x, ¥, %, @,
of each of the quadrics.
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15-84. The point-, line-, and tangential equations of a quadtic
can from a certain point of view be considered as invariants, The
tangential equation, for instance, is a simultaneous invariant of
the quadric and a plane

L=txtyyv+iztow=q,

involving the coeflicients of § in the third degree and those of

L in the second, viz. ~
i. a h g p ¢ ‘zo, O\
vh b f g o O
i g f ¢ ¥ C < ::g '
.[ P g 7 d w o \
| & n { w o ~\

and its vanishing is the condition th{it 'L should touch §.
Similarly the point-equation is an 1n~\anant of the quadric S
and a point P=xé+yn+ &+ wwaA0y involving the coeflicients
of X in-the third degree and Tyl %, w (the coeflicients of P)in
the second, and its vamshlng 18*the condition that £ should le
on S. The line-equation =% is a simultaneous invariant of S
and two planes, involving the coefficients of S and those of each
of the two planes L,L all in the second degree; and it is aiso a
simultaneous in xga:nt of S and two points P, P’; its vanishing
is the conditiopnthat the line of intersection of L and L or the line
joining P an@ P’ should touch . Any covariant or contravariant
can in fa\t ‘be considered as an invariant; it is a question of
v1ew-pmnt

N\
«16-61. Reciprocal of one quadric with respect to another.

\ ‘\ ’Tke locus of the pole, with vespect to a given quadric Sy, of @
N/ variable tangent-plane of another quadric .S is a quadric.

Let S =ax*+by* + e+ du=o,
Sy=axt+ i+ 22 fpl=o.

The tangential equation of the pole P of the plane (£) with
respect 10 Zy=£24n2 4 (R4 o2 ig

Férnn+ {4+ w'w=0,
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i.e. the coordinates of P are [¢', 7, {’, ']. But the plane (¢ is
a tangent-plane to Z, therefore
bedf™ + acdn't+ abdl’* + abew? =0,
i.e. P lies on the quadric
S’ =bedx® 4 acdy® + abdz? + abow? =0,

Similarly it may be shown that the envelope of the polar with
respect to Sy of a variable point on S is the quadric whose
tangential equation is \

O\
S =af by 2+ dwt=o, PR
_but this is just the tangential equation of 5. A

'the two quadrics S and 7 are symmetrically relateci with
respect to .S,, and each is said to be the feapmmf\af‘ the other
with respect to S;.

15-82. The reciprocal of & with respect jco’ﬁ‘is asimultaneous
covariant of § and ,$’, and can be exprgssed 1n terms of the co-
~variants 7, 7" and the simultaneous {ny#riants of S and 5.

Let S=axt+h? -1-622—]—(1'502 S’—“x“-l—y + 224 w2,
Then the reciprocal of S witht ret*spect to S is
R=bhedx® +'acdy2 + abdz®+ abcw*=o0,

Now | T' fded+ abd + abc) ™ + ...
\g‘; abe. T at — Zbcdx®.
Therefore ) R=08-T".

We verify thaﬁhé expression on the right is homogeneous in the
Coeﬂicwm—(s'\of each quadric, the degrees being 3 and 2 re-
spectiyely’
Slmllarlv the reciprocal of S’ with respect to .Sis 0’5 — T o.
(Bx. Prove that the tangential equation of the reciprocal of S

\ \‘Mth respect to 8’ is
@IE( ——A’T’ :0.

15-7. The harmonic complex of two quadrics.
The line-equation of the quadric S is {see 15:31)
V=l o + Ot oo oot o F Kytith + .o
20ttty t+ oo+ 200Ut o + 2R3t U+ .0
42Kttt .0 =03
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this represents the quadratic complex of lines touching the
quadric. Replacing S by S+ 28" we have

W= AT AR

where W=epul+ ... =0 —fHut+ ..
and Y=(b'+b'c—2ff )u,*+
T is obtained from ¥ by the usual “polarising” process re-
presented by QY
Ll a , .
T=3 (a5 7), O\

'\
the summation extending over all the coefficients of $:

T=o0 represents a quadratic complex associated\with the two
quadrics. It is the complex of lines which are cut harmonically by
the fwo quadrics. Let the line (p) be determined by the two
polnts (%) and (x,), so that Y

=Py =8 — J’zﬁ'}v etc
A variable point on the line is ';‘eprebenred by x=x+ At
Substituting in S=0 we have v
Syt 22 (axpdy .. )+ A28, =0,
and the roots of this quadratic in A determine the two points of
intersection with S, {A ‘similar equation determines its inter-
sections with &% /Ehe condition that the two pairs of points
should be harmonic is .
(@ QY@ a2+ )+ (a4 ) (@ %2+ 0
=2(axy %+ .. ) (@ Ky o)

and thiq‘;r\educes to o

O B ) hmem) =0,
48 T=o. This is called the Harmonic Complex or Complex of

\.Battaglini,

Similarly the assemblage of lines through which the tanﬁent'
planes to § and ' are harmonic is another harmonic complex

(BC'+B'C—2FF)p,%+ .
A particular case of the last complex is obtamcd when we take

" X’ as the circle at infinity, We have then the complex of lines

through which the tangent-planes to the quadric S are
orthegonal,
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15-81. Line-equation of the curve of intersection of two
quadrics.

An arbitrary line is cut in involution by the quadrics of a
linear system, the double-points of the involution being the
points of contact of the two quadrics of the system which touch
the linc. The line-equations of the twe quadrics S and 87 being
T'=0 and ¥’ =0 the line-equation of S§+A5 =0 is

P+AT+AT =0.
If the line-coordinates of an arbitrary line / are substituted 1),
this equation we have a quadratic in A which determines the gwo
quadrics which touch /, and their points of contact are the
double-points of the involution on L But if 7 cuts thexturve of
intersection (.S.87) of the two quadrics, the involutiondegénerates,
for then one point of each pair is this point of intersection. The
two quadrics which touch [ then coincide aud\J

g =T (N
This is therefore the line-equation of the curve (SS'). It re-
presents a quartic complex of lines {3

15-82. Ifthelinelisa tangen;’té:(SS’) it touches every quadric
of the system and we have ¥ =0, ¥’ =0, Y=o, three equations in
line-coordinates determining'a line-series, in fact the assemblage
of tangents to the curye.’These tangents are also of course the
generating lines of‘tm developable belonging to the curve.

A curve and itsdevelopable can be represented in six different

AKX

Wavs: '

(1} Tht;:"éi}ve as a one-way locus of points is represented by
two equations in point-coordinates (S=o0, S'=o).

(a) T'he curve as 2 one-way assemblage of its tangent-lines is
wefrbsented by three equations in line-coordinates

' (¥=o, =0, T=0).

The same equations represent the developable as a one-
dimensional assemblage of its generating lines.

(3) The curve as the complex of lines passing through its
points is represented by a single equation in line-coordinates
(47" =7T2). The same equation represents the developable as
the complex of lines lying in its generating planes.
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(4) The curve as a two-dimensional envelope of planes is re-
presented by a single equation in tangential coordinates (15-52),
(5) The developable as a one-dimensional envelope of planes
is represented by two equations in tangential coordinates
(327 =7% 3Z'r=1"2).
(6) The developable as a two-dimensional locus of points is
represented by a single equation in point-coordinates, A
We have still to find this last representation.
L\

15-83. Pomt-equatmn of the developable belongmg to’the
curve of intersection of two quadrics.

If P s any point on a tangent-line to the curve (Sb ) its polar-
plane with respect to any quadric of the llr,mﬁr system passes

‘through the point of contact of the tangentine ; all such planes

pass through one line, which thereforeﬁﬁ:s the curve. If we
express the condition that the line of. ’in‘ter&;eutwn of the polar-
planes of P with respect to S and (8 Cuts {SS’) we shall obtain
an equation involving the coordihates of P, and this will be the
point-equation of the developﬁble

Taking S= b3y pal 8=,

and P=[x/, %, x, » } we have the line of intersection of the

two pldnes \\Ea x/%,=0, Sx,’ xr_o,

viz, - “ Ty =pa=(a;,—a;)x;'x;. _
Then "I"\i;"—._,‘-zzaia;pﬁz , Y=EYp2, Y=2X(a;+a)pits
and theséquation required is

O PP

N JThis has now to be expressed in terms of the point-coordinates

“%,’, and we can do this by means of S, $° and the covariants

T, T'. Thus
T =Xa et +a)x2=2a; Sa,x’~Sates
T=X(a;a;a,+ a;a;0,+ @; 0 a1) X2
_ =2a,0;0,. a2~ Na,aa,x,2
Therefore Zalx2=0'S—T,
Ta,aa =05 T,
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Now
Y=XYa,a,(a;,—a;) x2x2
=Xapa(al+ af)nPef - 2a,a, 6,0, ZZ %, 2% f
sXa;x2 Zaapan— A(Zx

therefore V=S8 -T)-AS"
Similarly =S(0'S—-T)—-A'S2
Again, © o Y=EXE(a+ @) (a - a;)tx2xl.

T is symmetrical and of degree 3 in the coefficients of each of(" 5N
the quadrics, and by comparing dimensions we see that it ¢an™
be expressed only in terms of (ST+S8'7T"), CDSS’, \ and
{052+ ®'5%), Comparing coefficients we find ¢
T=038 —(ST+S'T).
Hence the point-equation of the developai?l@',s
(OSS -ST-85'T) N\
= 4088 — ST~ AS™) (@SS~ ST—-A'S%).

%7 2

15-91. Conjugate generators ofa duadnc
We shall consider the gene:aft;ré of the quadric § which are
conjugate with respect to amether quadric .5".

Let Ny ;axf}kﬁy2+czs+dw3=o
and Syt gt a o,
The generatqré";)f:one system of S are
'\75 Yty —c.x=A(y —a.2+1/d.w),
AN by—v—es) =y —aa—vi.e
Thc l’ine coordinates are thus
\ } st"—ZP‘N/( ad), P01=_2'\\/(_bc)’
Pa= — (324 1) 4/(bd), D= (A2 +1)v/(ca),
Pr=(A—1)+/(—cd), pu=— N —1) V(- ab).
The polar of

.  [Pas s Py vl
with respect to S is
_ [Pos s D3> oels
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and the condition that two lines (p), (p") should be conjugate, or -
that () should intersect the polar of (p7), is
) Pubor’ ot Pups’+ =0,
ie.
—4{bc+ ad) N 4 (ca +bd) (A2 + 1) (A2 + 1)
—(ab+ed)(X®—1}{(A?—1)=0.
Write for shortness be+ad=1, ca+bd=m, ab+cd=n, then we,
have a (2, 2) symmetrical relation between A, A’ .
(m—n)B2X 2+ (m+n) (AL A)? R \)
—2(m+n+ 2 M + (m —n)s0.
If we put X’ =2 we get an equation of the fousil dégree in A
(m—m) (A 1)+ 2(m+n—2£)k?-»@j~.‘

IHence there are four self-conjugate generatord

In general there are two generator,sj‘&)hjugate to a-given
generator A’, corresponding to the reots: of the quadratic equa-
tion in A O

{(m—m)A 4 ()} A% — 4{»’?’1-’%— {(m+mA2+ (m—n)}=0,

If the two generators which @re conjugate to A’ are conjugate to
one another, the roots Ay, Ayof this equation must be connected
by the same equationie.

(m—m) kz%”(?f@)?ﬂz+ha)2—z(m+n~}- 2) A+ (m—m)=0.
On substituting the values of the symmetric functions Aot
and A,A; wérobtain the equation

{Q{:i}é’z} N+ 1)y +2{mtn— 20X (mn+nl+ In)=o.
If,&wi:ﬁo we obtain again the quartic equation giving the
foul ‘self-conjugate generators, and there are no sets of three
m: geferators mutually conjugate. But if Zmn=o the equation 1
) identically satisfied and there is an infinity of sets 01? three
mutually conjugate generators. The condition Zmmn =0 15 DOW
easily identified with @0’ — 4AA =0, for
Zmn=2a bc=Xa.Lbcd— 4abed.
Hence, since the condition is symmetrical, §© — 4AA’ =0 i 272
necessary and sufficient condition that each of the quadrics S, $
should have an infinity of triads of gemerators of each Sysier
mutually conjugate with regard to the other gquadric.
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The cross-ratio of the four generators of a quadric § which are
self-conjugate with respect to a quadric S’ is evidently a simul-
taneous invariant. In particular the condition thatit should have
the value —1 is the vanishing of the invariant J of the quartic
equation®, This gives :

(mtn—2l)(n+I-2m)(l+m—2m)=o,
which i3 equivalent to
202 — gD — w2AM'D 4 27 (AR + A'BY =0, ¢\
. N\S ©

If the roots of the quartic form an equianharmonic tetrad, with
cross-ratio a complex cube root of unity, the invarianf\J=o.
This gives RS,

Z(lt—mn)=o0, \%
which is equivalent to - N

2%

D2 206"+ 12AA7 =p’.:> -

15:92. The results-of the last sectign €an be interpreted in an
intercsting way in non-euclidean getmetry in which the circle
at infinity (a degenerate quadrig)i8'replaced by a proper quadric
S'=a2+ 2+ 2+ uP=0. Two lines which are conjugate with
respect to S are perpendi‘éjllar, and we have the result that in
the general quadric § éfc are four lines (imaginary) which are
sclf-orthogonal, and, when a certain condition is satisfied the
quadric contains\'ﬂﬁ' infinity of triads of mutually rectangular
generators, th{hon-euclidean rectangular hyperboloid.

In euclidesn geometry the general quadric has four self-
orthogopal\generators of each system. These are the (imag{nary)
genelj'«}fors which pass throngh the four points of intersection of
the(Conic at infinity with the circle at infinity. o
SJIf the four points of initersection of the circle at infinity with
the conic at infinity form a harmonic set on the conic at in‘ﬁnity,
one pair of common chords of the conic and circle at inﬁnlt}j are
conjugate with respect to the conic. In this case one pau-'of
complementary planes of circular section are conjugate w1t}1
respect to the quadric. If the four points form a harmonic

* See Analytical Conics, chap. XIX, § 194
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tetrad on the circle at infinity, one pair of complementary planes
of circular section are orthogonal.

Ex. If Ay, 0, O, A, are the simultaneous invariants of the
conic at infinity € and the circle at infinity €’ show that the condition
that the four self-orthogonal generators of .S should be harmonic is

20 — 98,8,y + 274,24, =o.
15-95. EXAMPLES. 3

1. If two quadrics have a common generator, show ghaty
A= A0, O

2. If two quadrics have in common two geﬁérézors of one
system and one generator of the other system}s}ww that
AQ=A®E W
and (00" +8AA") = 160AN".

. 2 3
3. If two quadrics touch along@\g€nerator and have also two
generators of the other system i common, show that

4A/0 =30 [20=20/30 = /47",

4 Ifa hexahedfon,.xv}ii:ch is a projection of a parallelepiped,
can be inscribed in the quadric .5’ and circumscribed about the
quadric S, prove that _

AN 8A200’ + 4A02D — O —o.

5. If twe'spheres are orthogonal show that 4AA" =060, and
CDDVQIQ{;‘I}Y" if 4AA' =06’ cither the spheres are orthogonal or
d?=9{#* +r'?), where r and 7 are their radii and d the distance
between their centres. '

m; > 6, Prove that the volume of an ellipsoid is $m(—A3 DY
N 7. Bhow that

321~ )2 (- ax) o
represents two hyperboloids of revolution having contact along
the generator x=0=1y; and that if t=1 they have contact
along two generators. [[his arrangement affords a system of

bevel gearing, the axes of rotation being inclined at the angle
2 tan~ £.] -



CHAPTER XVI
LINE GEOMETRY

16-31. A line is determined uniquely by either two points or
two planes, and in either case we have a four-by-two matrix, the
coordinates of the twopoints and the coordinates of the two planes

[xn X ¥y xs} {fo L & fs]
and .
Yo 31 Yo Vs M Th N M p
We denote the six determinants x;y; —x;9; by p;, and the si;( N
determinants £;4; — &4, by wy. From the fundamental 1nc1den(:e

relation Eoo-buty o oy g3y =0 )
which expresses that the point () lies on the plane (g‘-}}ve derlve
the relations (2-323)

Tyt T Tyt Wyt Ty Wi =Poa P Prp ¥ Pbl Pon P
so that the ratios of one set of numbers ( p) d}termme the ratios
of the other set (m). O

Further, since the determinant 8N

Xy &y NN
EN S
-*i&\xl Xy X3
3"V e s
is identically zero, we, have the identical relation
@ {Pa WG Pm; e} =PpuPmt PrePat Pulrz=0
The set of s&\numbers (p) connected by this identical relation

N\
are Phickér’s.oordinates of the line; the numbers (@) are some-
times, te" Sistmgmsh them, called the axzal coordinates, and (p)

the vy \coordinates.
\18 12. Two lines have an incidence relation when they have
2 point in commen and therefore also a common plane. Ex-
panding the determinant

| Xy, X I ¥z Xy |y

[ Y ¥ Y2 s -
’
PUSEE A A )
¥ ‘ +

Yo W Y Vs
SAG . . 2z
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which vanishes identically, we have
Puipe’ + Poaba’ + Puabrie + Pt + P+ Prafs’ =0,
which is ' Lpw . - =0,

Conversely, if (p) and (p") arc the coordinates of two lines
which are connected by this equation, the lincs intersect.

16-13. A single homogeneous equation in {p) rcpresents\a
three-dimensional assemblage of lines or complex ; two equations
represent a two-dimensional assemblage or congriuengés three
equations determine a fne-series such as the regulus of @quadric,
or the tangents to a curve; and four equations degériine a finite
number of lines. m\: _

16-14, If a line is given to pass through aixed point it is de-
prived of two degrees of freedom. "L'bg {qqnditions that the line
(p) should pass through the point (v} arc any two of the lincar
equations Xyt %ipr PRD =0, '
where 1, f, k are given any threg of the valucs o, I, 2, 3.

Similarly, if a line is givento lie in a fixed planc it is deprived
of two degrees of freedém. The conditions that the line (m)
should lie in the plang\(¢) are any two of the linear equations

oitg\iwjk"réjwki'i_gkmfi:o' :

16-18, The l}x\es of a complex which pass through a given
point formeavone-dimensional assemblage or cone. Let the
equation:@f\ the complex bé f{(pu, ..., Po1s .--) =0, NOMOGENEOUS
and Qﬁaic nth degree in (p). If we substitute p;;=&;¥; — %
in.ﬁie ‘equation we obtain an equation which is homogeneous
@nd of degree 7 in the coordinatés (x) and also in the coordinates

o N{y). If () is fixed, the equation then represents a cone of order

. #. Similarly the lines of a complex which lie in a given Plane
envelop a curve. If we substitute @,;=¢&;7; — &9 We obtain an
equation of degree # in (£) and also in (), and if (%) is fixed the
equation represents a curve of class # lying in this plane.

The number # is called the degree of the complex and is thus
bath the order of the cone formed by all the lines through aB
arbitrary fixed point and the class of the curve formed by all the
lines lying in an arbitrary fixed plane,
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16-16. The linear complex. '

A complex of degree 1 1s called a Enear complex. All the lines
through a given point P lie in a plane =, and all the lines in
a given plane 7 pass through a point P, in each case forming
a plane pencil: The point and plane so associated are called pole
and polar with respect to the complex.

'The general equation of the linear complex is

l‘awPU_
and thus depends upon the ratios of six numbers a,;. There 13\' O
no lnss of generahtv in making the convention' that .\
@y = — 4Ly, Gy=0. "G

With this convention the equation when written in ter@s ‘of the
coordinates of two points (x), (v) is

D%y =0 N

1f (y) is fixed this equation represents the\ptﬂar plane of ().
Since the equation is skew symmetrical i) and () it follows
that if the polar-plane of P passes thraugh O, that of Q) passes
through P. If () belongs to a lineaff;faﬁge of points (v Az) the
polar-planes form an axial pencil|™

D X%, 8, =0.
Thus to a line 7 as a range™0f points corresponds a line I’ as the
axis of a pencil of planeg If P and O are points on /, and P’ and
' points on 7', the  polar-planes of P’ and Q" both pass through
P and Q, hencc fhe relation between [ and 7' is symmetrical;
cach line is cgtied the polar of the other.

Two p &f:ﬁi-les do not intersect, for if / cuts , and P is any
point or e polar-plane of P contains P and the line /" and is
therefake the fixed plane (PI') or ('), unless [ and I’ coincide;
amd Sl and coincide, the polar-plane of any point on  contains

d thercfore belongs ta the complex. '

A?IJ’ Iine of the complex which meets a line I meets also its polar
I, for if p cuts 7in P the polar of P contains p and {'; thus p and
[ lie in one plane and therefore intersect.

Ex. Prove that the polar of the line (g) with respect to the linear
complex Ta, o is

Q 5 = @k Ears Gy Gii 0 (af’)'
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16-2. Line-geometry is perhaps best studied in connection
with geometry of higher dimensions, The geometry of ordinary
space 1s said to be of three dimensions because in it a point has
three degrees of freedom. A plane has also three degrees of
freedom, and if the plane is taken as the element we have again
a three-dimensional geometry, dual to point-geometry. But the
line has four degrees of frecdom, and a geometry in which the
line is the element should be of four dimensions. ~
16-21. Four-dimensional geometry. O\

There is no difficulty in extending analytical point=geometry
to four and more dimensions, For a space of fog;ﬂ(gﬁmensions
S; we define a point as a set of values of the ratios of five
numbers Xy, ..., x, taken in a fixed ordery these are the
homogeneous coordinates of the point. If\the numbers are all
multiplied by the same factor &, not gqré,:they will continue to
represent the same point. If (N7

Fr=[x, ..., %] an.,d: »= [%y +oes 4]
are two given points, the co,Qi:&iﬁates
,,‘.S{;f:';i %+ Ax;
represent for all valyésof A a point on the line P’P’. Similarly

,\{N tpxi=xi’+)‘xa‘”+#xi”! .
represents points on the plane determined by three fixed points,
and ’, '

O -
'\1“ > pxy= xf'(l) -+ }\xitz} + I,_in(3) 1 pxg.@) .
repgibﬁts a point having three degrees of freedom and lying in

th¢\Space determined by four given points. In the last case,

Jeliminating A, g, v-and p between the five equations we obtail
{Jan equation of the first degree and homogeneous in %o, -:x %1

the equation of the space. ‘This is of the form

Eoxg+ L+ & =0,
and involves the ratios of five numbers &, ..., £, which may be
regarded as homogeneous tangential coordinates of the space:
With two simultaneocus linear equations we can express ¥
linearly in terms of two parameters. Thus two equations de-
termine a plane as the intersection of two spaces. Three equa”
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tions determine a line, and four equations a point. A space cuts
a space, a plane, and a line respectively in a plane, a line, and a
point. A plane cuts another plane in a point, and does not in
general cut a given line.
16:22. A homogeneous equation of the second degree
XX, %, %= 0 '
represents a three-dimensional assemblage of points which is
cut by an arbitrary line in two points. We shall call this a guadric A
zariety or simply a quadric, and denote it by the symbol 1,5,
A quadric in three dimensions is V,% The theory of pole and
polar can be extended in an obvivus way. Two pointg, fx) and
{y) are conjugate with respect to the quadric KA 4
EEa,,%,%,=0 \Y
when ' X s ¥y Y =0. ’::\\.’
If (v) is fixed and (x) is variable, the equation”
Ezarsyrxs=9::" )
represents a three-dimensicnal spa’cfé or three-flat, the polar
three-flat of (). H () lies on ¢l quadric this is the tangent
three-flat at (). \\
If two points P and Q arg'conjugate and each lies on the quadric,
all poinis of the line PQJ’:& on the quadn}:. (Proof as in 8-22.)

16-23. As in three\:lime'nsions, therefore, it appears that a
quadric possesses generating lines. If P lies on ti}e quadric the
locus of pointé, gonjugate to P is a three-dimensional tangent-
space o, andsthis meets the quadricin a two-dimensional quadric
surface ":‘Q\Q is any point on this two-dimensional q'uadric the
line PQ, since it joins two conjugate points both lying on the
quddyic, is a generating line of the criginal quadric and therefcnte

‘&g\e}lerating line of the two-dimensional quadric. The !atter is

therefore a quadric cone with vertex P. Through every point Pon
the quadric there is thus a cone of generating lines. On this cone
takeapoint Q. Then the pelar of Qisa three-dimensional tangent-
space  which cuts « in a plane, the polar—plam_: of the line PQ
This plane cuts the quadric in a conic consisting in part Oflthf: line
PQ, and such that every line in its planecuts PQmtwo comm'dent
points; hence the conic consists of the line £Q counted twice.
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16-24. If the quadric variety V,? contains a plane o, let P be
any other point on the variety, then the polar of P is a tangent-
space which cuts « in a line p. All points on p are conjugate to P
and lie on the quadric, therefore all the lines joining these points
to P lie on the quadric. The quadric therefore contains also the
plane (Pp). If Q is another point on the quadric we obtain
similarly the plane (Qg). p and ¢ both lie in, the plane « apd
intersect in a point O. The planes (Pp) and (Qg) both pass
through O, but have no other point in common, for if theghad
another point in common they would have alinein corfatnon and
the three planes would all be contained 1n one thrcg-.x{ii tnensional -
space S. 'I'he intersection of this space with thd Aadric variety -
would then be a quadric ¥,? containing thesé shree planes; this
is impossible unless the quadric variety cotitans the whole of &
and degencrates to two three-flats, S afih another.

Assuming then that the quadric va}iéty does not degenerate,
the point O is conjugate to all pqihi;s tn either of the planes (Fp)
and (Qg), and therefore to an§dpoint on any line joining two
points, one on each of theseBlanes, ie. to any point in S,. Then
if R is any point of thelgtadric, and # the line in which the
tangent-space at R cufs', the plane (Rr) passcs through 0. 'The
quadric variety i3 @1 this case a Aiypercone with vertex 0. Its
section by a spa ¢'not passing through O is a quadric 'y and
the hyperconk.ds generated by lines joining O to the points of

V2 The plérles determined by O and the generating lines of Vj#
all Tie éithe hypercone. Thus @ hypercone in S, has two singly
fwf&%{t@tsystems of planes all passing through the vertex O, Tuwo
plomes of the same system have only the point O in common, 100

. (\Planes of different systems have a line through O in common. '
Y A quadric variety in S,, not specialised, has no planes but a triple
infinity of lines, through every pomnt a cone of Iines.

16-25. The generating lines of a quadric in .5, are not divided
into two systems like those of a hyperboleid. I we project
stereographically from any point O on the quadric on to 2 space
%, the tangent-spacc 7 at O cuts  in a plane and this plane cuts

_the cone of generators through O in a conic C. The geperating
lines through O are then projected into points of this Conic.

! is any other generating line it cuts the tangent-space 7 in a
point P which lies on the quadric and therefore on the cones



%vi] LINE GEOMETRY 343

P is therefore projected into a point P’ lying on €, and / into a
Iine through £, Thus all the other generators of the quadric are
projected into lincs in & which meet the conic €. The generators
form a three-dimensional assemblage and are projected into the
points of the conic C and the complex of lines which meet C.

18-3, Five-dimensional geometry,
It is possible to represent the lines of S, by points of S,

but the most symmetrical representation requires space of fiy€ )

dimensions, taking the six homogeneous coordinates of a lme\m
S, 28 homogeneous coordinates of a point in S;. |\

16-31. We shail therefore sketch further the geometr} of five
dimensions so far as it is required for this represen"fa\ﬁon In S,
we have points, lines, planes, three-dimensionalspaces or three-
flats {85}, and four-flats (.Sy), represented respe&\vely by freedom-
equations in o, 1, 2, 3, and 4 parametesgpand by 3, 4, 3, 2, and
1 lincar equations respectively in xp, £3%;. The dual elements
are point and four-flat, line and t};;ég—ﬂat, plane and plane.

16:32. A quadric variety V28 S, is cut by a four-flat in a
quadric variety V3? of one dlmeﬁsmn fewer, by a three-flat in an
ordinary quadric, by a plape in a conic, and by a line in two

* points. If P and Q arelconjugate points with respect to ¥* and
both lie on the quaa‘m} variety, all points of the line PQ lie on
Vo2 'I'he tangent fohr-flat o at P meets ¥,? in a hypercone with
verte‘{ P. If P a point on this hypercone the tangent four-
flat Bat QO ”ciu}s o in 4 three-flat and this three-flat meets ¥ ina
qua.drnc\hlch has the line PQ as a double-line and therefore
consists,of two planes which lie entirely in the quadric variety.
T h{{s @ quadyic variety in Sy possesses not only lines but also planes,
v through each bne.

16-33, The plancs of a 7,2, like the lines of a quadric in .5,
are separated into two systems, but two planes of the same system
always intersect in a point, while two planes of different systems
either intersect in a line or not at all.

Project the ¥,? from a point O upon it on to a four-flat 7. The
tangent four-flat = at O cuts = in a three-flat and meets the
quadric variety in a hypercone V2 with vertex O. This hyper-
cone possesses both lines and planes, and these are projected into

N\
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the points and lines of a quadric ;2 in the space of intersection
of w and 7. Thus the planes of V2 through O, which are also the
planes of the hypercone, are separated into two systems corre-
sponding to the two systems of generators of 17.?; two planes of
the same system have only the point O in common, two planes
of different systems have a line in commeon. Through each point
O there is a single infinity of planes of each system,

Let o be any plane of ¥, not passing through (3. « cuts v %
line  which is projected into a line I of ¥,2, and « is prejected
into a plane &’ in =, which passes through /. The plapes,oé in
general cut the space of V,? in lines which cut Vi 1Y pairs of
points, those which are the projections of planes af the quadric
V,? pass through lines of ¥,2. Also lines of 15- Shich are pro-
jections of lines of V;? pass through points of l’f

Let a, B be two planes of V2 of the same watem not passing
through O. Their projections «’, 8 of #'cut the space of ¥,? in’
two generating lines of 7,2 of the sdme systcm and therefore
non-intersecting. o  and B’ do not "then intersect in a line but
have just one point C” in copifnon. As C” is not on Vit is the
projection of just one pomt '€ on ¢ and this point is commion
fo « and B Hence two planes of the same system have always
one point in common\ “and we have proved above that they have
only one point i \éofﬁnmon

Let now &, Bbe'two planes of V2 of different systems. If they
have one point“m COMmMon we ha\ee proved above that they have
a line in common. We shall now show that they may have no
pointtt.common. Let [ and m be two generators of ¥y of

' dﬂTQent systerns, C their point of intersection. Let 4 be a point
Jdny, not in the space of V,2and call the plane (4/) «’. Let B bea
pomt in m, not in the space of ¥,2 nor in the three-flat (Akn), and
call the planie {Bm) 8. "T'hen «’ and B’ are the pm]ectlom of two
planes @ and Bof V2 not passing through O, and since «’ and §’ do
notliein the same three-flatthey have nolincin common, therefore
¢ and fhavenolinein common and therefore no point in common.

A V2 in S; has oo* points, 50° lines, and two systems of %°
planes. Through each line there are two planes, onc of each
system. Through each point there are c0? lines and two systerms
of oo planes belonging to a hypercone V.
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18-34. A four-flat cuts a V2 in a V2 which has in general no -
planes. A four-flat which contains a plane of V,* meets ¥,2in a
hypercone and is therefore a tangent four-flat, the vertex of the
hypercone being the point of contact ; the four-flat then contains
oo planes of V2

A three-flat cuts V% in a quadric. If the three-flat contains
three concurrent lines of V,? it meets ¥,% in a cone and is a
tangent three-flat, the vertex of the cone being the point of *&
contact. If the three-flat contains a plane of V;? it meets ;2 i,
two planes and is a tangent three-flat along the line of intey-~
section of the two planes. Similarly a plane may touch a\V;¥ at
a point or along a line, or lie entircly in the V2. )

A line / cuts a ¥,? in two points P, Q. The tanggntfour-flats
at P and O intersect in a three-flat L which is.tlie‘polar of the
given line. A plane through PQ and containing 2 generating line
through P is a tangent-plane, hence thgq{g’h PQ there are oo?
tangent-planes to V2% As the point of xdatact is the intersection
of a generator through P with a g@ﬁﬁhtor through Q, all the
points of contact lie in the polar(three-flat and their locus is a
quadric. Through the three-‘ﬂat: L there are just two tangent
four-flats, their points of cofitact being the points in which the
polar line 7 cuts the quadric. If the line /is a tangent at P, its
polar three-flat I is.a@).é tangent at P and all the tangent-planes -
through [ lie in B,

The tangentfowt-flats at the points in which V;? is cut by a
plane p all pasy through another plane p', the polar of p, and the
tangent fo(lgzz\ﬁats which pass through p all have their points of
contagri{zr . '

164 We take now the six homogeneous coordinates py, ...
<b;t‘é line as homogeneous coordinates of a point in S;. The .
{dentical relation '

PoipPes T Poebsi+ PousPre=0

being homogeneous and of the second degree, represent?, a
quadric variety ¥,2. We shall denote this by o and the functlfm
on the left by w(p). A line / of S; is then representled by a point
I on this quadric. We shall use the same symbi?Is in heavy type
to denote the objects of .$; which represent objects of S;.
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16-41. The condition that two lines p, p’ should intersect is’

and this is the condition that the points p, " should be conjugate
with respect to w; all points on the line pp’ then also lie on w,
so that pp’ is a line of w. The condition that two lines p, p’
should intersect is therefore that the points p, p’ should lie ons
the same line of w.

16-42. A plane Pin w contains oo® points, every two Q{'ﬁ-‘hi\ch
are conjugate. It therefore represents a doubly ininitg¢-System
of lines of .S, of which every two intersect, i.e. eithefa $ystem of -
all lines lying in one plane (plane field of lines), of &system of all
lines passing through one point (bundle of\lines). These two
systems correspond to the two systems of planes of w; we shall
call them field-planes and bundfe-p!ane.s'f\T}m planes of w of the
same system have always one point inegmmon ; this corresponds
to the fact that two bundles of line$*or two planc fields of lines
have in each case one line in cginmon. But a plane field of lines
and a bundle of lines have gdine in common unless the vertex

* of the bundie lies in the plane of the field, in which case they
have a plane pencil if ‘¢ommon. A line of w, through which
always two planes\t"{di’fferent systems pass, therefore represents
a plane pencil of lines.

16-43. If Ghe lines p and p' intersect, (po+ Ao’y -o-h OF
shortly (g4p"), represents for all values of A a line which cuts ..
both@nd p'. T'hese are represented by the points of the line
pp{Hence when p and p' are intersecting lines, (p+2p) e

desents the plane pencil of lines determined by p and p”. The
~\wertex of the pencil is represented by the bundle-plane through
" pp’ and the plane of the pencil by the field-plane through pp
Ex. Prove direétly that when p and p’ are intersecting lines,

- (P +2p) always represents a line and that it passes through the Po‘rﬁt
of intersection of p and p and lies in the plane determined by p and P -

16-5. A linear complex ayp, + ... =o is represcnted by the
intersection of w with a four-flat, i.e. by a V,?; a linear con-
gruence by the intersection with a three-flat, i.e. by a quadm_c;
-and alincar series by the intersection with a plane, i.e. by a conc-

*
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16-51. The linear complex @y py; + ... =0 has an invariant,
viz. the simultaneous invariant of this with w, or the condition
that the four-flat should touch . This is
_ = ag oy + Aos oy + Ay 312 = 0,
the tangential equation of w,

16-52. When Q=0 the complex is said to bespecial or singular.
The condition €2 =o0 shows that [y, ...] are the coordinates of a

line, and the equation of thecomplex expresses that the line p cuts \
this line. Hence a special linear complex consists of ali the ling§

which cut a fixed line. It is represented in S; by the intersectiof
of w with a tangent four-flat, i.e. by a hypercone. The vértex of
thishyperconerepresents the fixed line or directrix of t}chmplex.

16-53. The polar of a three-flat is a line and thig\CHts w in two
points d;, d,, which are therefore conjugate td\all points of the
three-dimensional section. Hence 2 lingak eongruence is the
assemblage of alllines which meet twe, frxed lines d,, d,, its
directrices. The congruence is called Zyperbolic or elliptic ac-
cording as these two lines are reglijr imaginary.

16-531. If thedirectrices intéfsebt, d, and d, are conjugate, and
the line d, d, lies on . Infthis case the three-flat, whose inter-
section with w reprcsegts}the congruence, touches w along this
line. This litie is 2 d6uble-line on the quadric, which therefore

becomes two plarics, The congruence then consists of all the -

lines which liexif(the plane o= (d;d) together with all the lines
which pass thebugh the point of intersection P of d, and &,. The
directricesd, and 4, really lose their identity and can be replaced
by any{fwo lines lying in o and passing through P. This con-
gl‘}lf—:ﬁéb is said to be singular.

<i16:532. When the directrices coincide, the three-flat touches
oS in a point, and its intersection with w is a cone with vertex d.
The congruence thus consists of all plane pencils of lines which
have a line 4 in common. It is called a parabolic congruence.

1654, A linear scries is represented by the intersem-:ion of w
with a plane w. This plane is determined by three pomts, and
therefore the linear series is determined by three of its lines, The
polar of u is another plane «', which also is determined by three

QY
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peints. To this corresponds another linear series ; and since every
point of # is conjugate to every point of #', every line of the one
series cuts every line of the other series. Hence a linear series is
the assemblage of all lines which meet three fived lines, i.e. a
regulus. The two series, corresponding to the two mutually polar
planes, are the two reguli which belong to the same quadric,

If the plane # touches w at a point p, #’ also touches w at p.
The two linear series have then a line p in comrmon. #meets @ iR,
a pair of lines I, m, and #' meets w in a pair of lines 7', m’. Eael
linear series consists of two pencils with a common line. Singe I-
is conjugate to I’ and to s, the planes I’ and s’ lie jig); these
are the bundle- and field-plane through 7, and simildrly zl” and
mm’ are the field- and bundle-plane resPCCtivzefy’ through 1.
Hence this linear series consists of two pencil{¥, «) and (B, B),
the line 4B which joins the verticescoinc\iding with the line of
intersection «f of the two planes; and, fHe polar serics consists
of the two pencils (4, 8) and (B, a¥ )

If the plane # touches w along 4 line I the serics degenerates
further to two coincident pencil§¥T'he polar planc #’ touches w
along the same line and determitnes the same pencil. The vertex
and plane of the pencil arefépresented by the bundle-plane and
the field-plane through(h '

Finally if # is a pldne of o it represents either a bundle of lines
through a poing, or'a plane field of lines.

In general theMines common to two linear complexes form a
linear conghjence, and the lines common to three linear com-
plexes fotma regulus, but the congruence and the regulus may
be sps{ciﬁ’lised in one of the ways noted above.

41655, Three points I, m, n of w determine a conic on @; three

(Yines I, m, n, in S,, determine a regulus, Four points on & de-

W

termine a three-flat cutting w in a quadric; four lines in Sy
determine a congruence, the directrices of the congruence are
the two transversals of the four lines. Five points on determine
a four-flat; five lines in .S; determine a linear complex.

16-6. Polar properties of a linear complex.

16-61. Let C denote the four-flat in .S, which corresponds_w
a linear complex C. To the lines of C which pass through a point
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P correspond the points common to the four-flat € and the
bundle-plane P of w. But Pcuts Cinaline /, and this represents
a plane pencil. The plane of the pencil (polar plane of F) is
represented by the field-plane p through 7, the peint P (pole)
being represented by the bundle-plane P through 1.
16-611, It will be more convenient to use the symbols
%1, ..., X for the line~coordinates p,;. The six equations x;=o,
..., Xy=0 represent six four-flats of reference. These intersect . £\
in fifteen three-flats, twenty planes, fifteen lines, and six points,
and form a figure called a simplex, the analogue of a triangle and™)
a tetrahedron. A change of the simplex of reference is effedted
by a linear transformation of the coordinates, and thp:ftfnda-
mentzl quadric w may be represented by a general hﬁoQo'geneous
equation w(x)=o0 of the second degree in x,, ...; ¥,
16-621. A linear complex is represented by thg'two equations
w{x)=0, Tax=o0. \
The condition that it should be singhlag’is that the four-flat
Yax=o0 should touch w; this is regréserited by the tangential
equation of the fundamental quadtie with the coordinates & of
the four-flat substituted, iL.e. Q(gi); 0.
16-622. A linecar congruﬁgncé 1s represented by three equations
w(x)=b, Tax=o0, Zbx=0.
'T'he directrices are ¥epresented by the two points in which w
is cut by the line joining the poles of the four-flats Zax=o and

‘ ' \X ¢Q
Thx=o. Tl};{ coordinates of the pole of Zax=o0 are AiEEE"
and free@ﬁi‘—'equations of the line joining the two poles are

O =M+ pB; (f=1, 0 6)
E‘?b'sfti’fu'fing in w{x)=0 we obtain a quadratic in M,
A% }\zw(A)+)lp2Aaa%+p2m(B)=o,
and this is equivalent to
Q)+ MpZa o+ p20()=o.
o0Q

Hi _Q(a):O, Q(b)=o0, and Ea%=o, the directrices are in-

determinate and the congruence is singular.
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16-623. A lincar series or regulus is represented by four

equations ., (x)=0, Tax=0, Sbx=0, Ncv=o.

The complementary regulus is determined by

a0 ¢ Q.
w(x)=0, x%=ﬁa—m—{—p%b;+vai—t (IZI, ._“,6).

Substituting these values for x; in w{x)=0 we have a home<{
geneous quadratic in A, g, v which may be represented by a conic

in a (A, g, v)-plane; When this conic breaks up into two ]ir@s?'the

regulus breaks up into two pencils. The condition for this is

therefore that the discriminant of the quadratic .8 ™

oQ, Q. 20 N
(‘)\ O— %b +v ) =0
should vanish, Y

W

16-63. Polar lines with respect to.a Jinear complex,

Consider a linear complex C agg-any line /. The LUmPICX is
represented by the intersection of'w with a four-fiat €, and the
line by a point 7 of w. T_he,péi‘:its on / and the planes through_l
are represented respectiyely by the bundle-plancs and the field-
planes of w which pa§s‘t~hrough the point Z, These all lie in the
tangent four~flat Tto"w at I. Now T cuts the four-flat Cina
three-flat 4, and™hrough 4 there is a second tangent four-flat
T’ 10 w touchifig it at the point ¥'. 4 cuts w in a quadric V52 and
the planes'QLw which pass through either Z or I' cut 4 in hnes
of th1s\ @iadtic. The bundle-planes through 7 and the field- planes
through i’ contain the lines of one regulus of ;2 the ficld-planes
through t and the bundle-planes through I’ contain the lines of

/" the other regulus. Hence the polar-planes, with respect fo the
complex, of all points on the line / pass through /', and wice
versa, so that [ and I’ are polar lines with respect to the linear
complex,

The quadric V.2 in which 4 cuts w represcnts the linear cob- -
gruence consisting of lines of the complex which cut 7; [ is one
directrix of this congruence and I is the other.

The lines joining pairs of points I, I’ which represent polar
lines with respect to a linear complex € all pass through one
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point, the polar of the four-flat € with respect to w. Any line of
the complex is polar to itself.

Zx. Show that the two directrices of the linear congruence com-
mon to twe given linear complexes are polar lines with respect to
each of the complexes.

16-64. Conjugate linear complexes.

If the four-flats € and €’ are conjugate with respect to w the
corresponding linear complexes €' and (' are said to be
conjugate®, (\ -

If O and O are the poles of the conjugate four-flats € and €5
O is conjugate to O, C passes through O', and €’ through ‘0.
A self-conjugate complex is singular, for if 0=0", O.dks on w
and C is the tangent four-flat at Q. If one complex Gi} singular,
so that O lies on w, the four-flat € corresponding to any con-
jugate complex passes through O, hence thej&h’ectrix O of the
singular complex is a line of the other, J&both complexes are
singular and conjugate, QO lies in o afid represents a plane
- pencil belonging to both complexesythe two directrices O and
O’ intersect and the common peneil is that determined by the
intersecting directrices. N\

16-85. If /is a line commioh to two linear complexes C and FZ",
a homography is set u,p"on the line I by the poles P, P, with
respect to C and € variable plane p through /. The hon@o-
graphy is not in gendral symmetrical. If p’ is the polar of P with
respect to €7, Agd’ P’ the pole of p’ with respect to C, P will
generally be/different from P'.. Project from the point I ontoa
four-flag eI he lines and planes of w through 7 are projected
into tlyépoints and lines of a quadric Q whose three-flat T 1s the
projection of the tangent four-flat  to o at 1. The four-ﬂats: C
angl"C’, which pass through I, are projected into three-f?ats. wl.nch
clt T in two planes C, and C,'. If @ is the pole of. Citliesin 7
as its projection O, lics in T. The polar of the line O 1s the
three-flat (Cr); every point of Of 18 conjugate to every point (?f
(Cr) with respect to w, and therefore, cutting these by 7, O, 18
the pole of €, with respect to Q.
. ¢ apolar,” Baket uses

i<
# Klein used the term **in involution,” Hudson used
‘apolar” or *“ conjugate.”
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Through { take a field-plane p of w. This cuts € and € in
lines @ and @', and through these we
have the bundle-planes P and P’
The bundle-plane P cuts € and C’
in @ and &', and the bundle-plane P
cuts € and €' in b and a&'. In the
projection (Iig. 47) € and C' are re-
presented by plane sections of Q; the
planes p, P and P’ by generators of
the quadric Q; and the lincs a, &', &
and b’ by points where these cut C
and €’. Corresponding to the homo-
graphy of points P, P’ on a fixed a
line /, we have a homography of
generators P, P’ of the quadric @ whem\tie gencrator p is
varied, and the condition that the homdgraphy be involutory is
that 8" should be a generator of Q:,ﬁc’lﬁn the lincs ab and a'b’
are polars with respect to Q and the planes € and C'are conjugate.

Hence the homagraphy on 1 ismvolutory only if the complexes
are conjugate. B

.«.\H?g, 4%

Ex. 1. Two non-intersecting pairs of polar lines with respect to
a linear complex belong“to* the same regulus.

PR

For the corresponding’ points Z, I’ and 2, 22’ of w lic on two lines
through O and thégeforc all lie in one plane.

Ex. 2. If twd.lines ! and m interscct so also do their polars.

16-7. Jaish as the equation of a quadric can be expressed by
the sum (©f four squarcs, by taking a self-polar tetrahedron as
frameof reference, so a quadric in S; is expressed by the sum of
si}i’;squares when referred to a sclf-polar simplex. By suitable

... (ehoice of unit-point the equation can finally be reduced to the

\™
\ form x12+x22+x32+x42+3€f52+x62-—— .
The expression for the identical relation connecting the sl
homogeneous coordinates of a line can, in fact, be reduced to this

form by taking new coordinates which are linear functions of the
old. One such transformation, which is due to Klein, s

D=1 +%y, Poo=2%y+i%5, Poa= ¥yt ¥,

Doy =2 — %y, Poy=2x,— %5, Pra=7ay—1¥ge
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Then the six tinear complexes x, =0, ..., x;=0 are all conjugate
in pairs. (It is not possible by a real transformation to reduce the
equation to the sum of six squares. It can always be reduced
to the form a,%°+ ... +a.x®=0; thus writing py, =+,
Pay =123 — X4, €tC., We have
w2t ag® — e — w2 —xl=o0,

So leng as the transformations are real, half the coeflicients
t, ..., @3 must be positive and the other half negative, This is an
instance of Sylvester’s Law of Inertia. Geometrically, when the, C
coordinates are real the quadric has real planes only when the *
signs are three + and three — ; when four are of one signjg.ﬁd
two of the other, the quadric has real lines but no real-planes;
when five are of one sign and one of the other sign, tlﬁhuadric
has real points but no real lines or plahes; and when' the signs
are all the same, the quadric has no real poings).

16-8. "The Quadratic Complex. \ S\

A quadratic complex is representéd) by a homogeneous
quadratic equation U/=o in the six-ine-coordinates, and in S;
is represented by the intersection:af'the quadric w with another
quadric U. The linear system of ‘quadrics

. OvAw=o0
all correspond to the mﬁf&ﬁuadratic complex, so that U by itse}f
has no particular significance. We shall denote the quadra:tlc
complex by K, a{rd ‘the three-dimensional variety in S5 which
represents it b K. In general U and w have & common _self—
polar similfe')i}taking this as frame of reference we can write
O w=Xx2, U=sZhst

16:81." The intersection K of U and w is a three-dimensional
@ iety which is cut by an arbitrary plane in four points. Hence
- afuadratic complex has four lines in common with an arbzz:fary
regulus, A special quadratic complex consists of the tangent-lines
to a quadric, hence, as a particular case, we have the.resu.lt:
There ave four generators of each system of one given quadric which
touch another given quadric.
All the lines of a quadratic complex which pass through a
given point P form a quadric cone, and all the lines which liein
8AG 23
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a given plane p envelop a conic. A plane P lying in w cuts Uin
a conic, and this conic lies in all quadrics of the linear system
U+Mw. If Pis a bundle-plane the conic in P represents a
quadric cone, the complex cone, and if it is a field-plane the -
conic represents a conic-envelope, the complex conic,

16:82. If the quadric cone through P has a double-line and
therefore breaks up into two planes, the point P is called a
singular point, and if the conic in the plane p has a doubles
tangent and therefore breaks up into two pencils, p is called'a
singular plane. The planes of « which correspond to §mgular
points and planes ail touch K, and envelop in w a certhi variety
S, which represents the locus of singular points and the envelope
of singular planes. This surface § is called the fgular surface of
the quadratic complex. We shall show présgntly that it is of
order 4 and class 4, i.e. that it is cut by an\ydrbitrary line in four
points, and has four tangent-planes Qn&lgh an arbitrary line.

16-83. Polar of a line with respécf: to a quadratic complex.
The polar four-flat A of a. péint I=(y) of w with respect 10
the quadric U has the equatfon
P ’ Exa—g =0,
_ A\ oy
while the polar\f&ﬁr-ﬂat of 7 with respect to w is the tangent
four-flat = atdjand its equation is
A 0w _
\,\u Sx Bj_o'
qu\p:dlar four-flats of with respect to the quadrics of the lincar
system U+ Aw form a pencil of four-flats ‘
) (x a,\g-% A% z—w‘ =0
: oy oy /
all passing through the three-flat L of intersection of Ay and ™
This represents a linear congruence, the polar congruence of the
line I with respect to the complex. The pole of = with respect £
« is the point of contact 3 let I;=(u) be the pole of Ay with
respect to w. Then the directrices of the congruence are re”
presented by the two points in which the line I, cuts w, 01¢ 0
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these being I itself. Taking the canonical equations w=Xx?and
Us=%kx% u;=Fk;y;. The points on the line #; joining () and
(1) are given by

¥e=y;+ ‘)‘kzy i
and the points of intersection of this line with w are determined
by the guadratic equation

Z(y+Aky)i=o.
But Zy*=o0, hence one root is A=o0, and the other is given by

AL Ryt 4 25 ky=o., O)
18-831. If (y}=/1is a line of the complex, LAy*=o0, and fhe
second directrix of the polar congruence coincides with 24 In
thus case the congruence (which is parabolic) is called hQ angent
lincar congruence for the line L. 1 is conjugate to-INwith respect
to w and lies on 7, and the line 7; lies on 7. _\

16-84. Further, if I lies on w, ZA%y?=04 the line I, lies on
 and represents a plane pencil of S;The directrices of the
tangent linear congruence become mdetermmate all the four-

flats of the pencil 3
ol iy
6L i)
gy oy
Le, Zkyx—i—)mZyx o, are tﬁ\ngent to e at points of the line 7.
The tangent congrue cq‘}s now singular, and consists of a plane
pencil containing l,,xvertex and plane being represented by
the bundle- plane Pand field-plane p through the line #fy. In
this case the lifg) \[is called a singular line. We shall see that P
and p repre&ezn a singular point and a singular plane incident
with this
Let{z) be a point on one of the two planes P, P, so that
ME}? =0, Zyz=o0, Lkys=0, Ty°=0, Lhy*=o, Tky’=0,
}hen all the points on one of these planes are represented by
Kom= AR+ py o+ vReYs. .
"This plane meets K or U at points (x) where X 2=0, 1.6,
AT ket 42T kSy2+ 2dv kT yz=0.
Since this quadratic in A, u, v breaks up into factors the plane

touches K and therefore corresponds to a singular point or a
23-2
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singular plane. A point (x) thus determined is conjugate "
I=(y) both with respect to w and with respect to U, for

' Sxy=Alyz+ pZyi 4 vRky =0
and - Skay =MD kyzy + uXky? v Eyi=o,

Therefore the two planes P and p through #; both touch K
atong lines passing through I These
lines of contact represent two pencils
of lines of the complex, one with vertex
P and the other with plane p, and the
singular line { belongs to each pencil;
the line I, represents another pencil
of lines of the complex having vertex
Pand plane p. Pisthereforeasingular *
point, and p a singular plane. The
complex cone at P breaks up into the O
plane p and another plane passing\fhyough the singular line IH
the complex conic in p breaks yp:iﬁto the point P and another
point lying on /. ONY

The coordinates of singulanlines (v) of the complex satisfy the
three equations N

Fig. 48

Zyi—'-ib, Tky?=0, Zk%y:=0.

Hence the singu aﬁiﬁcs form a two-dimensional system or ¢on-

gruence represented by the points I common to these three

quadrics, w,&latd U’, say. (U'is the reciprocal of w with respect

to U) T{lgﬁ are tangents to the singular surface S.
16-85,“We consider now the singular points on a given line

and ie singular planes through /. These are representE_d by
Bundle-planes and field-planes of w passing through the point 4

Oand touching K. The whole assemblage of lines and planes of w

which pass through I form a hypercone ¥V lying in the tangent-
four-flat 7 to wat & Denote as before by L the three-flat commot
to all the polar four-flats of I with respect to the quadrics of the -
lincar system U+Xw. L cuts ¥ in an ordinary quadric ¥y, "’:“d
every quadric U+Aw in a quadric Uy. The planes of @ whi ch
pass through  cut L in the generators of the quadric V1, bundle-
planes corresponding to one system of generators, and field-
planes to the other. In order that one such plane should touch
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K, the corresponding generator of ¥, must touch U,. Nowa
regulus has four lines which touch a given quadric, hence there

- are four bundle-planes and four field-planes of through the
point { which touch U; and therefore K, and for each the conic
breaks up into two lines. Hence on any line / there are four
singular points of the complex, and through ! there are four
stngular planes. The singular surface .S is therefore of order 4
and class 4. .

18-86. Co-singular quadratic complexes. | ¢\
The coordinates of a singular lne of the quadratic complex
' Nat=o0, Thkat=o, ..“:i.’.'("j)

are determined by these and the further equation@%®x*=o.
(kx) is then a line, and the two lines {(x) and (k{).intersect and
determine a point P and a plane p which are both'singular. Now
we can obtain a single infinity of quadra ié:}omplexes whose
‘singular lines are lines of the pencil (Ppg),) If (y) is any line of
the pencil determined by (x) and (kx) 7

im0 (2)
" and xi=(;§e%}-):1y£-
Now consider the quadratic complex
Iy FopS(k-A) =0, ... (3)

in which A is given aﬁl}fﬂcular value. Its singular lines are de-
termined by the t&¥d equations (3) and Z{k—-A)~2y*=o0.
Now — Z(hEA)-2y2-Zat,
LB — 312 =X (k—X)x* =S kxt~AZa%,
AN Dy SR S ke T
Henge ¥ (y) is a singular line of the complex (3), Za*=o,
X Jx%= o0 and Th*s?=o, so that (x) is a singular line of the com-
“pléx (1); and wice versa. There is one line of the pencil
: Y=k %, — Xy,
viz. that for which pt=2A, which is a singular line of the complex
(3}; P and # are a singular point and a singular plane for both
complexes,
Hence all the quadratic complexes of the system
Tx2=o0, (k=) 1xi=0,
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for all values of X, have the same singular surface. These form a
co-singular system. The original complexes must be included in
this series. We have '

(kX tat= =3 T(1 -k

= —£ 2 E. O B8 )
h(zx +A2Lx + .. .,
and another quadric of the linear system is N\
142l 2=_l( 2 lvpags Y=oV
E(k—-A)1x +AEx e Tha? 5 O ...}:.\0,
ie. Ekxz-%-%ﬂkgxz—t— =0, ’“.i"}‘;
which becores Lkx?=0 "‘\
as A —- oo, )

The co-singular complexes are repg@eﬁted in S, by the inter-
section of Sx%=o0 with quadrics ofithe system
T (k—Aa*=0. _
These form a linear tangengiél"s}?stem. Instead of this system We

may take N\
S{k—A)"1+ A xt =0,

ie. . .\aff;\ Sh(k—-A a2 =0,
The tangential, %uation of this is

Q" 3 (k—X)k-12=0,
te. O e AT ¢k =o.

2\ ' .
T ¢824 is the tangential equation of w, and S ¢k =o0 that of v
e ka®=o. All the quadrics of this system touch all the four-

w\;"\’:_’ﬁéts which touch both @ and U, We may thus compare a €0-

\‘:

singular system of quadratic complexes with a confocal system
of quadrics.

i6-9. We have considered the general quadratic complex it
which the singular surface S is of order 4 and class 4, and
possesses 16 nodes or points at which the tangent-lines form a
quadric cone, and sixteen tropes or tangent-planes in which the
tangent-lines envelop a conic. This type of surface is called 2
Kummer surface, ‘
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For quadratic complexes of special form the singular surface
becomes specialised.

The complex being represented by two quadratic equations
w(x)=0 and U(x) =0, consider the discriminant of the linear

ratem
3 U—Xw=o0.

‘This is an equation of the sixth degree in }, and for each root of
the equation the quadric is specialised as a cone. The vertices of
these six cones are the vertices of the common self-polar simplex.

In the general case the six roots are all distinct. L

18-91. Quadratic complex of tangent-lines to the quadxif."

F=ax®+by*+ ca? +-dw=o. \\
We have U= adx,®+ bdxy®+ cdsg®+ bexgd + caxg®+ alixgl=
with w = 2(x1x4+x2xg+x3xs)=o, \\\
where Xy == Pory ooer X1= Py .’

The discriminant of U/ —Aw is ()@—-gﬁgi{:.é&i)‘*’?= o, 80 that the roots
are in two sets of three. Hence thesizhypercones reduce to two.
Taking A= +4/(abed), U —Aw bEcomes

(V(ad) s, — v/(be)watt 1-GoAbd) 2~ v (ca) )
| O Wi Vi
which represents a specialised hypercone having 2 double-plane
C as edge determiﬁeé by the three equations _
Viad) s, = 3/Qe) z, +/(bdyaz= /(@) /(cd)%s= V(ab) .

The Plané%“cuts U-and o in the same conic; U and w touch at
all poigts of this conic. Similarly taking A= — +/{abed), we ob-
tainAnbther conic €’ at all points of which U and w have contact.

¢'two planes € and C’ are conjugate with respect t0 bot_h w
and U, and the two conics represent the two reguli of the given
quadric surface. _

The singular surface is the qua
every tangent, i.e, every line of the complex,

16-92.  The quadratic complex of tangent-lix.les toa f:one,for
of lines through a conic, is represented by the intersection of w

adric F itself, taken twice, and
ia singular.
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with a hypercone having a double-plane as edge. In particular
the complex of lines through the conic
x4y tai=0, w=0
is (see 11-71)
U=x24 a2+ a2 =0, 0= 2{%, 54+ Xz %5 K32} = O.
The discriminant of U+)w is M=o, so that all six roots are
equal. The double-plane %=0, x,=0, ¥;=0 is a plane of w. .

16-93. The tetrahedral complex. O\
€ N\

There is one other quadratic complex of special ingerest; the
complex of lines which cut the four planes ofa give;a}.;eﬁ‘ahedron
in a fixed cross-ratio. This is called the tetrahedyal complex.

Taking the tctrabedron as frame of refgm}:ﬁc let (p) be a
variable line determined by the two pointeN®', ¥, 2 »') and
(2", y", 8", w"). Freedom-equations qfﬁ‘ré line are

=" —Ax e,

This cuts the four planes x=0, =0, =0, W=0 where A has
the \{alues -%',fx”, yrf,{yri’ .zr/zfr, w-r/w!f,
and the cross-ratio of theie four numbers is

erxﬂf _ ('/z”_ -jill.lyﬂ__zr}lfzu _&3 ?32
5 /{ﬁw [ vy —w [ pul b’ |
The tetrahedtal complex is therefore represented by the equation-

U, DPoePatRpPupn="o

where k\ls tonstant., Taking with this
~G

A  w=PpyestPudnt PuP=0

LN\ . .
Jie.Can represent it symmietricaily by
O w=0, Usapyps+bpupmt cPoubr=0

\J If the cross-ratio of the range formed by the intersections of th_e
line (p) with the planes x=o0, y=0, =0, w=0, in this order, 15
denoted by (XY, ZI¥) we have

(XY, ZW)=(a—c)/(b—¢).
Through the line (p) there is a sheaf of four planes passing
through the vertices of the tetrahedron. The equation of the
-plane through the given line and the vertex [1, 0, 0,0] 18

=PVt PoaZ+ P =0.
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Similarly Up=PaX+ P2+ Pryw=0,
Uy =P X+ Py +Ppw=0,
Ug=Pog¥t+ P ¥+ Praz =0.
u, and #,; can be expressed in terms of #, and #,, thus
Pty = — Pl + Poatiy,
Pagthy = — Payty — Py,
Hence the cross-ratio
(uyty, wz103)= (0, 903 PoafPor, —PaalPs1) O\
— _pnzpril.: XY Z : \\ ’
_ Pl)lp% ( ’ W)' (".}(’
The discriminant of U —Aw is (A—a}2(A—ER(A—c)? 29y 50 that
the roots consist of three pairs. The three hypercpn}ﬁ have each
a double-line.

16-94. 'T'he harmonic complex of lines\@}\t'hérmonically by

the two quadrics O
Fr=axt+by*+ed* ddt=0

and F=ax+ b’y2j—j]p:%2+ duw?=0

is U=(be' +b'¢) po’+ coiP(ad + @ Do+ - =0,

@ =2 (s Pou + PyiPon+ Pra Pus) =
The discriminant of ¥ is
X2 — (b’ + i) (el + @' dyy (A2 —(ca’ +c'a)(bd' + 0}
QO XN —(ab’ +a'b)(ed +c'd)} =o.

The six root§'aré distinct, but they form three pairs eqlfa! but of
OPPOSite.Q'g\n". This complex was studied by Battagllm as an
examplof the general quadratic complex; but it was shown by
Klaii;: that while the general quadratic complex involves nine-
mt@‘éﬁ'independent constants, Battaglini’s complex depends only
o1 seventeen, ) .

'The singular surface of a harmonic comple)l: is a pal:tlcular
form of Kummer’s surface called the Tetrakedroid. & special case
of the harmonic complex is afforded when one of the quadr‘lcs
becomes the circle at infinity; it is then the locu.s of m‘te‘rsectlllog
of pairs of orthogonal tangent-planes t0 2 quadric. This 1s ;a e
Painvin’s complex, and its singular surface, when the quadric 15
an ellipsoid, is Fresnel’s Wave Surface.



362 LINE GEOMETRY [cHaP.
16-95. EXAMPLES.

1. Show that the assemblage of normals to a given quadric
forms a congruence of order 6 and class 2. :

Verify that on any plane section there are two points the

normals at which to the curve of section are normals to the

- quadric: viz. the points where the given plane section is cut by

the diametral plane conjugate to the normal to the given plane.

». Show that the assemblage of all normals to quadrics of 2"
confocal system form a tetrahedral complex, the planes Ofythe
tetrahedron being the three principal planes and theplart at

infinity. N\
3. If (), (g), (#) are the coordinates of thrsti‘lines and the
tri . N :
i Por e Pre
o --- G2 ’:‘.\\Q
Tor oe rl?‘j::\ ’

is of rank 2, show that the lines ate’coplanar.
4. IE(p), (), (r), (s} are the woordinates of four lines and the

matrix . :?oi o P1o
AN Qo e G

.i\ For +-- F12

\\ . So1 «- S1g

is of rank 3{shbw that the lines belong to the same regulus.

5. If (A) afe the Plitcker coordinates of a line which is an axis
of some plane section of the quadric ax* + by?4-cr?=1,prove that
\\\ : o PaPm _ Poebn__ PosPrr
\ ' alb—c)” b{c—a) cla—b)
\"\} 2 6. The condition of tangency of a linc [/, m, #, A, i v) and 2
quadric being given by T'=o0, where T is quadratic in the co-
ordinates of the line, show that the coordinates of the polar llﬂt_3

are proportional to fﬂai)_:', ey %1,
7]

Prave that if four lines are mutually conjugate (each m eting
the polar of any other) then their two transversals are alse cOI”
jugate. How may the double-six of lines be thus constructed?

" (Math. Trip. 11, 1913")
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7. Show that the lines common to three linear complexes
given by
Ki=ad+bptevtol+pimtyn=0
and two similar equations, generate a quadric; and find linear
complexes containing the other system of generators.
Shew that the condition for a line to touch the quadric is

Iy Iy Is K=o

| O
I‘al Izz Iaa Kz' \
In Iy I K, ,\\Q
K, K, K, o W\

where 2l o= a0+ by Bt e yp+ @y + B+ eayy {‘é\&

(Math. T@ ) 1913.)
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CHAPTER XVII
ALGEBRAIC SURFACES

17-1. An algebraic surface is the locus of points (real or
imaginary) whose homogeneous coordinates , y, %, w satisty an
equation F{x, v, %, w)=o0, where F denotes a rational integral #

" algebraic function. If F breaks up into rational factors the sur-
face is reducible. We shall generally suppose that itis irredusﬂslp\.

17-11. Considering first the equation written in nop-fome-
geneous cartesian coordinates x, 3, 2, let it be arranged in groups
of terms according to their degree A

F‘n'l"Fﬂ—l"}_ "'+F2+f‘1+Ft)291

each term being homogeneous in x, ¥, its degree being in-
dicated by the subscript. Any line thigugh the origin is repre-
sented by x=1lp, y=mp, x=1np, wherd-g is the radius-vector and
!, m, n are direction-ratios. V\ihje’ri“these expressions arc sub-
stituted for #, ¥, # the cquatigmbecomes '

P but P bparct e+ p ot pdy o =0,

where ¢, denotes a hpﬁ’lﬁgeneous polynoinial in 7, m, n of degree
r. Hence an arbitrdcy line through O cuts the surface in n points.
This number #, the degree of the equation F=o0, is independent
of the frame ofreference, and is called the order of the surface.

Any plafigysection of the surface is an algebraic curve of order 1
for an’ {ine in its plane meets the surface, and therefore the
curyéin # points. :

P “47-12. If Fy= =0, one root of the equation in pis p=0, and
D is a point on the surface. A second root will be p=0 if also
,=0. This is a linear homogencous equation in /, #, #, S4Y
al+bm+cn=o0, and represents an assemblage of directions
through O belonging to one plane ax+by+cz=o0. Every line
through O in this plane meets the surface in two coincident
points at O, and the plane is called the tangent-plane at 0. Thus
when Fy=o the surface passes through O and the equation of
the tangent-plane at O is Fi=o.
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17-13. The tangent-plane at O culs the surface in a curve which
has a double-point at O, for every line through O in this plane
mects the surface, and therefore the curve, in two coincident
points there. '

(7-14. There are in general two lines through O, in the
tangent-plane, which meet the surface, and therefore the curve
of section, in three coincident points at O. These are the tangents
to the curve at its double-point. They are called the tnflexional
or principal tangents to the surface at O. Their directions @re
determined by the two equations ¢y =0 and ¢y=0. NowFy=0
represents a quadric cone, therefore the tangents to,the-curve
at O are the generators of this cone which lie in the tangent-plane.
According as these lines are real and distinctr:ﬁﬁaginary, or
coincident, the point O is called a Ayperbolic, eilptic, or parabolic
point. A hyperboloid of one sheet and ag,gﬁiﬁsoid are examples
of surfaces whose points are al respectivve}y’hyperbolic orelliptic.

If we take the plane #=0 as thie tangent-plane at O, the
equation of the surfaceis N

If’zz+ax2+by2+czz+gfjfzf4 22+ 2hxy -+ higher terms,

and the inflexional tangen’cs: at O are

' zzxé; ax®+ by?+ 2hxy=0. .
The point O is thgﬁﬁypcrbolic, pa%-abolic, or elliptic according
as A% —ab is pps."‘itive, zero, Or negative.

17-15. ,E&ﬁa:tion of the tangent-plane at a given point.

Let R;Ex’) be the given point and P=(x) any other poh}t.
Thgl}a"vari_able point on the line PP’ is represented by (A 2).
Ve find where this line cuts the surface by substituting in the

2\ L&q’uation of the surface and then expanding by Taylot’s theorem:

o=F(x+«,...)
| , oF
=F(x',y’,z’,w)+h(xa?}+'")

}\2 82F _E2_—F.'_ “ +AﬂF x’ ’z, w).
+5i.(""2'a?ﬁ+ e H2RW Bz’aw’)+ " (%

"This is the equation 0
n points in which the

surface, F(x', ¥, % w')=

¢ the nth degree whose roots determine the
line cuts the surface. Since () is on the
o and one root is A=0.
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17-16. A second root is also A=o if, in addition,
xa—F+ya£+zE+w or =0Q.
gy’ oy T T ey T ow
If P=(x) is a variable point, this cquation represents the locus
of points such that PP’ is a tangent at £/, 1.¢. the tangent-plane
at (x).

17-17. T'wo tangents at O are said to be conjugate when they ares
harmonic conjugates with respect to the principal tangents at G. 1
we take the tangent-plane at O as x=0, and Ox, Oy 15 a pair ofcod-
jugate tangents, the equation of the surface 15 o\ N

F=z+ax? +bv? +c2® + 2fve -+ 2gx 4 higher teIimé}‘t
the principal tangents being ¥=o0, ax®+&y*=o. '1“1{:;\'{1111 gent-plane
at a point P=[3x, 0, o] on O, very near to O, 1 (figtlecting 357

2a8x. 2+ (1 +2g38} 2=,
and this cuts z=0 in Oy. ¢

Hence each of two conjugate tangeni®@h O is the limiting position
of the intersection of the tangent-plaeat O with the tangent-plane
at a point very near O on the othgfttangent.

In the case of a parabolic poing() the two principal tangents at 0
coincide, and this tangent t’is:'g’o’njugate to any other tangent at 03
in this case the tangent-plane 3t any point P very near to U ultimately
passes through ¢, and if Plies on #, near O, the tangent-plane at I’
ultimately coincides @fith that at Q. The tangent-plane at the para-
bolic point O is the efore said to be a stationary plane,

The inflexional tangents become indeterminate if the quadric con¢
F, breaks up\jnfo the tangent-plane and another plane, ie. when £y
contains Fyas’a factor. Then the three lines in which the cubic cone
F, meets,the tangent-plane meet the surface in four coincident
poin s\ Phe curve of section of the tangent-plane at O has then 2
trip}}e point at O. The point O is called a point of osculation,

0 17-2. Curvature.

The distinction between hyperbolic and elliptic points can be
explained with reference to curvature. Consider a section of the
surface by a plane passing through a fixed line ON, and let OT;
OT’ be the two inflexional tangents through O. The plane N(?T
meets the surface in a curve which is met by OT in three coll-
cident points at O, hence O is a point of inflexion on the curveés
and the section has zero curvature at O. As the plane is rotated
about ON, the curvature of the section becomes reversed, Of
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changed in sign, when the plane passes through OT or OT". In
the case of an elliptic point all sections through O have curvature
of the same sign. )

Ex. 1f every point of a surface is a parabolic point, prove that the
surface is a developable. :

17-21. Meunier’s Theorem.

We shall assume now rectangular coordinates with =0 as the
tangent-plane at O, and therefore Oz e
the normal; and first we shall consider ’
sections through a fixed tangent Ox.

Let the plane of section make an-
angle ¢ with the normal plane xOz.
Take any point P on the curve of
section, near Oj; let L be its projection
on Ox and N on 20y. A definite circle is O}
determined which passes through P and™\"
touches Ox at O, and in the limit whcn
P approaches O this circle becomes the
osculating circle or circle of cuswature of the curve of section.
If its radius is p, then approximately LP(zp—LP)=#* But
LP=zsccd, hence o\ '

P& Tim §(x/z) cosd.

Fig. 49

Substituting y—& tang6 in the equation of the surface
2+ a&é#bf{- ez + afyr -t 2gzx+ ehxy+...=0,
¢ "\5 v/
dividing-by“» and letting » and & 0 We find

I _
O p= —Eacosdn

}ence of all sections through a given tangent the no;mz_ll
section has the greatest radius of curvaiure, and if this 1s
denoted by p,

p=py COS¢
This is known as Meunier’s Theorem™.

* Jean Baptiste Maric Charles Meusnier (1754-93)3 Mémoire sur la
courbure des surfaces, 1776.
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17-22. Measure of curvature. '

We consider next the sections through the normal. Let the
plane of section make an angle # with the plane of xz; let K be
the projection of P on the plane of xy and OK=r. Then we find
by a similar method the radius of curvature

p=Lim $r¥/z,
r—0
and the curvature of the section ~
o=p-t= —2{a cos®f+ 2/ cosf sinf-+bsin?d).
If O is an elliptic point, #2—ab <o and o is always of, the same
sign; but if O is byperbolic, & vanishes and changes stgn when
the plane passes through one of the inflexional fangents 07,
OT". In either case o acquires a maximum_efinimum value

when tan 28 =2k/(a D).

%

. a\ . . . .
The two planes which correspond to ﬁeée directions bisect the
angles between ZOT and ZOT" agd are at right angles, If oy
and o, are the maximum and minfmtim values we find

. ®d
o109=4(ab— k%) apdil(oy+ap)=—(a+d}
both of which are invariangs of the quadratic expression
Luxt 4 2hay + by?

for orthogonal %hsformations. 0,0, is called the Gaussian
measure of curoatire® of the surface at O, and the positive value
of %(o-_l-l-cg),is',eélled the mean cureature. At an clliptic point the
measure of gurvature is positive, and at a hyperbolic point it 18
negativel/At a parabolic point one of the curvaturcs is Zero,
corresponding to the section which contains the inflexional
tangent, and the measure of curvature is zero.

"y " A quadric surface has its measurc of curvature everywhere of

O

) the same sign, but in general on a surface there are regions of

positive curvature and regions of negative curvaturc, and these
are separated by an inflexional curve or locus of parabolic points.
A familiar example is the anchor-ring which is generated by a
circle of radius b rotating about an axis in its plane at 2 distance

"# Carl Friedrich Gauss {1777-1855): Disquisitiones generales cired super-

Aicies curvas (1827). English trans. by ], C. Morehead and A, M. Eliltebextels
Princeton Univ. 1902,



a from the centre. A concentric sphere of radius /(a2 b2) cuts
the surface in two circles which separate the outer positively
curved region from the inner region of negative curvature.

17-3. Polars.

The equation (17-16), whether the point (') lies on the sur-
face or not, represents a definite plane associated with the point
(x'}; this is called the polar-plane of (x). The equation may be
expressed in the following notation '

(x#Dy}F=0, O\
¢ a ¢ G} N\
where (xDy)=x §E+y61—}’,+z@+w%,. O\

N
This is called the polarising operator. A repetition of thisgperator
L

gives Doy 2 a2 > ~\
(x a‘.’) =X m-}- -!"ZZanz,aw”

since , ¥, £, w are independent of ', 3/, z{,:?z}}ﬁ'The equation
XK€

(17:15) can then be written O
(v, 5, &, @) + A& F- PeGDIRF+ .. =0
or - 5D T8

Equating to zero the coefficiént’ of X? we obtain a quadratic
equation (xD,)2F =0, which ‘Tepresents a quadric called t}%e
polar quadric of (x'); andiéimilarly a series of polar surfar:t_:s is
obtained by equating\(t:cr zero the _coeﬂicients of'the various
powers of A. It isjepnventional to reckon the seres of polars
from the end, and the first polar is a surface of order n—1 re-
presented by, the’ equation

Y oF | oF
QY Tty
or o3 (¥'D)F=o.

“THe rth polar of (") with respect to Fis (-”"’D:)'F: =0, a:ld the
}h polar of (x') with respect to. this surface 13 (@ Do) leo’
which is the (7 + 5)th polar of (x'} with gspect to F. In particu a;
the polar plane of (x') with respect to ' is also the ;:olar pIa'L;le o
(x') with respect to any of the polar surfaces of {x); andFl (}*’f’)
lies on ¥, so that its polar plane is the tangent-plane at (¥ )t llfi
is also the tangent-plane to each of the polar surfaces. Hence at
the polar surfaces of a point on £ touch oné another at this pont.

24
SAG .
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17-31. The first polar of P(x") passes through ihe poinis of
contact of all the tangeni planes or lines through P, Let (2)) be
the point of contact of a tangent-plane through f; the cquation
of the tangent-plane at this point is (x/),,)f'=0. Since it passes
through P, (x'D,,) F =0, hence (x,) lies on the locus (x'Dp) F=0 .
which is the first polarof P,

17-32. The Hessian.

Returning to the section of the surface by the tangent-plane
at a point P, the tangents to the curve of section at the doyble-
point P are lines which meet the curve, and therclore thesurface,
in three coincident points at P. Thesc are determintd therefore
by the two equations 7\ 3
(xD.)F =0, (xD,):F =0y \"
which represent respectively the tangentplanc at P and the
polar quadric of P. But since P lies b the surface the polar
quadric touches the tangent-plang a6 and its two generators
through P are therefore the tangéi;té to the curve of scction at
the double-point. o '

*ad

When P is a parabolic paf t the two generators through P
coincide and the polar quatiric becomes a cone. The condition
for this is expressed Qy the vanishing of the discriminant of the

~aga

. 282 [ I 4
- quadric. Dropp@g"the dashes, let F,, denote =, and so on,

then the condition is

NYH=| F.. Fy P I =0
~0 | e Fuy Ty Fow
Q& F. F, F. F.
Fuo Fuy Fuz Fuu

./ This equation represents a surface of order 4(n—2) which 18

called the Hessian of F. Tt is the locus of points whose polar
quadrics are specialised as cones. ,

The parabolic or inflexional points on a surface therefore lie
on a curve of order 4n(n—2) which is the intersection of the
surface with its Hessian.

17-33. The Hessian of a given surface is one of a series of
covariants, the discriminant surfaces whose equations are formed



by equating to zero the discriminants of the various polars of a
variable point. The Hessian is formed from the discriminant of
the polar quadric and is the locus of points (y) whose polar
quadrics are cones. If (xD),)*F=o0 18 a cone with vertex (), the
¢oordinates () satisty the four equations (see 8-31)

GRF 2K £2F oiF

T oot o a A&y et — = = y Ay &y .
Yoty w0y V10 X2 3 2 X3 8y:2; o (i=o, 1 2( 3;)
...... 1

Liiminating (x) we get the equation of the Hessian in current
coordinates {(y). Eliminating {y) we get the locus of the vertices< \)
of those polar quadrics which are specialised as cones. But th«xs
eliminant is the discriminant of the first polar of (), “viz.
{(x1),)F=0. This locus, whose order is 4(n—2)% is QHﬁd the
Steinerian of the given surface. Thus the Steinerians either the
locus of vertices of polar quadrics which are specialised as cones,
or the locus of points whose first polars have)a double-point.
Similarly the Hessian is either the locus'éf\points whose polar
quadrics are cones, or the locus of deuble-points of those first
polars which have a double-point. J8%°

Similarly we have a locus H-3f points whose polar cubics
have a double-point and this is\also the locus of double-points
of those second polags w #¢hs have a double-point. Associated
with this there is a locus(§"of the double-points of those polar
cubics which have a &ﬁ\ﬁle—point, and this is also the locus of
points whose secodd polars have a double-point. And so on.

Evidently fop'a‘cubic surface the Hessian and the Steinerian
are one and th&same, and it has no other covariants of this kmd

If P(y :is‘;i'point on the Hessian there is 2 corresp’ondmg
point (Mfe") on the Steinerian, the vertex of the quz}dnc cone
whieli's the polar quadric of P. The polar plane of P with respect
S AL oF oF  9F  9F__

Xo é’ﬂ, +xlw+xgay2,+xsays, [s)
For a variable point (y') on the Hessian the envelope of these
polar planes js determined by eliminating () between the four
consistent equations :
2 (e )=
7 %Yo :

24-2
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but the resultant is the equation of the Steinerian. Hence the
polar plane with respect to F of any point on the Hessian is a
tangent-plane to the Steinerian. The point of contact is in fact
the corresponding point on the Steinerian, for mulbtiplying the
four equations (1) respectively by ¥, ..., ysand adding we obtain
oF oF ol oF
Ko XA T X TAys— =
©Yo e G2 C¥s ~
i.e. the polar plane of (y) passes through the corresponding poil
(x) on the Steinerian, - N\
We have seen that the Hessian of a surface F mecfeF in the
locus of parabolic points. The polar planes of these hoints are
the (stationary) tangent-planes to the surfaceg These therefore
form a developable circumscribing the Steificiian. If Fisade
velopable all its points are parabolic poin@ anid therefore, in this
case, the Hessian contains F, breaking/ap into I and another
surface which Cayley called the P{dkhsimz.

17-4. The general homogenegus equation of the nth degree in
four variables contains %(ﬂ{i’)(;z-‘.—z) (n+7) terms; as only the
ratios of the coefficients ate significant an algebraic surface of
order # is in general determined by

%(ﬁfi){ﬁh—z)(n—‘rj,)—I:én(ﬁ—l—fm%— 11) _
constants, This\s called the constant-number of the surface_.
Since the condition that a given point should lie on the surface
is expresscd by a linear homogeneous equation in the coefficients,
an alge:t;}aic surface of order # is in general determined uniguely
bz%ﬁ‘(ﬁz—k 6n-+11) points.

,\~f S17-41. The class of a surface is equal to the degree of its

\”\} ./ tangential equation and is the number of tangent-planes which

pass through an arbitrary line. Let the line be PU: The point of
contact of & tangent-plane through P(x,) lies on the first polar
of P, say #,=o0, and the point of contact of a tangﬁnt'Plane
through Q(x,) lies on the first polar of O, say #,=0- The first
polar of any point (&, ++Ax,) on PO is iy + Alig= 0, hence the first
polars of points on the given line all have a curve in common, of
order (72— 1)?, and this cuts the given surface in a{n—1)° points.
Hence the class of a surfuce of order n cannot exceed n{%— 1)*. The
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actual number may fall short of this for, as we shall see, some of
the intersections may be double-points, ete., of the surface and
not points of contact of tangent-planes,

The class of a surface is also equal to the class of the tangent-
cone from an arbitrary point to the susface, and this is equal to
the class of an arbitrary plane section of the cone,

17-42. Reciprocal surfaces. A
If F(x, v, & w)=o0 is the point-equation of a surface,
F(& 0, [, @)=0is the tangential equation of another surface.’)
calied the reciprocal of the former. If ®(£, x, {, w)=o0_is the
tangential equation of the former, ®(x, ¥, 2, @)=o0 is the\point-
equation of the latter. The relationship between the td surfaces
is symmetrical ; cach is the reciprocal of the othéx“More gener-
ally, if F=o is a given surface and f=o0 a given quadric, the
envelope of the polar planes, with respect to 0 points on Fis a
surface called the polar reciprocal or simply the reciprocal of F
with respect to the quadric f. When f&¥*+y?+ 2*+w? the polar
reciprocal of F(x, y, 2, w)=o is F{&y, {, w)=0. The order of
thereciprocalsurfaceisequal tothieclass of theoriginal surface, and
viceversa. Henceif mis the clas§) the order cannot exceed m(m — 1)°.

17-5. Double-points.{ N _

When the order"s'ig’i;'en the class is reduced, as in _the ana-
logous case of a plane curve, by the existence of f:ertaln point-
singularities, arid avhen the class is given the order is reduced by
the presenge'of certain tangential singularities.

1754, {8onsider again the equation in 1711, If Fo=o0 and
also F{=0 identically, so that the equation contatns no terms of
lgwéf;degree than the second in &, ¥, 3, every ll.ne through the
~grigin meets the surface in two coincident points there, and
\ther eisa quadric cone of lines Fy=0 Whlch m.eet t.:he surfacel m

three coincident points. In this case the originisa s.mgular point

(double~point) which is called a node or conical point.

17-52. From the equation (r7-15) we sce.that (x) will be a
node if the coordinates satisfy the five equations

oF  oF__ OF_ OF_

F(x,y} < EU):Q’ 8_x=0’ 5}50, az=0: w



N
h
\ }

O

ff}Io‘he first polar of 4 is
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These are equivalent, however, to four only, since
wF +vF, - 2F +wl ,=ul

These four equations cannot in general be satisfied simultane-
ously, hence a surface does not in general possess any double-
points. Eliminating x, y, z, @ between the four equations F,=o,
F,=o0, F,=0, F,=o0we obtain a relation between the coefficients
which is called the discriminant of the surtuce. ~
17-53. When P is a node the cone of tangents at m;).g‘hreak
up into two planes, distinct or coincident. P is then catled a
biplanar or a uniplanar node; these tcrms are S(gaj;?fimes con-
tracted to binode and unode. Every planc throughacénical point
P cuts the surface in a curve having a double~point at P, but the
proper tangent-planes at P are those which touch the cone, and
these meet the surface in a curve havingatusp at P. When Pis
a biplanar node every plane containing’the line of intersection
of the two planes meets the surfateMn a curve having a cusp at
P; either of the planes meetsythe surface in a curve having a
triple-point at P. N

N

17-531. When a surfiee has no double-points the tangent-
cone from an arbitréty point is of class n{n—1)%. We consider
how this number'i# reduced when the surface has a double-
point. Take the double-point as D=[o, o, o, 1], and the vertex
of the cone-as A =1, o, 0, 0]. The equation of the surface is of

. the form >
9\

\k (ax®+by® + c2®+ 2fyz + 2gzx + 2hxy) w2
N +terms of lower degree in w=0.

F'=(ax+hy+ gz)w -2+ terms of lower degree in w=0-,

The equation of the tangent-cone from 4 is obtained by elirm"-

nating x between these two equations and is of degree n(n— 1); 1t

is generated by lines joining 4 to the points of intersection f.JfF

and F". F' passes through D, and the tangent-plane there 18
ax+hy+gr=o0.

This cuts  ax®-+by* 4 cx+2fyz + 202x + 2hxy =0
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(the assemblage of tangents to F at the double-point) in general
in two distinct lines, and A4 determines with them two planes
«, B whose equation

- —(y+gR)ta(By+2fyz+ et =o
or  (ab-ky —2(gh—af)yz+(ca-gat=0-

is obtained by eliminating x. The left-hand side is the co-

efficient of the highest power of w in the equation of the

tangent-cone. .
Any section of the cone by a plane y has then a double-poing,/

the tangents at which are the intersections of y with « andl_g.

" Tf the double-point at D is a binode, ax®*+ ... =o breaksvp into

two planes and the discriminant A of this quadrati,\czvanishes.

But . _ O
(ab— ) (ca=g) = (g~ ] P=ah 33
hence in this case the section of the cone %&ﬁ cusp. If thereis
aunode at 12, @x®+ ... =o reduces to tH soincident planes and
ab—h?, gh—af and ca—g? all vanish. \Hence the section of the
cone has now a triple-point. Ny
Since the class of a curve is dimtinished by 2 for a n.or:le, by 3
for a cusp, and by 6 for a triple-point, which is equivalent to
three double-points, werdeduce that the class of a 'surface is
diminished by 2 for gz:{if:j;"conimf point, by 3 for every binode, and
by 6 for every unodﬁ _
Ex. 1. Sho that the cubic surface '
2y 895 (2p - 9) - 3w - (2p — 3) 3w~ &y’
\”\ ' —(p—12) yut + gzl pryw =0
O\ .
has al’C}DubIe“point at [1,2,0, 1] and determine 1ts character’.
Lransform to a ey tetrahedron of reference XYZW’ where

“WHMZ[1, 2, 0, 1]. ‘I'he equations of W'YZ, W'ZX, -W!XI;’ wh
\a're X—w=0, y—20=0, ¥=0, W=0, and the equations of trans-

formation are ’
%" —x—w, therefore &=¥+%;

. . __ay fa

3y =y— 2w, y =y -+,
. F .
= =%, F=8;
w=u'

w' =1,
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Substituting in the cubic equation we find the coellicients of 2™ and
w'? to be
14+8+{2p—9)—3—(2p—3)—24—2{p—12)T2p=0,
3’ + 12y’ —6x' —(2p—3)x" —24y —(p— 12)¥ = pl2s’+17)=0,
and the coeflicient of &’ is
382+ 6y — 3xE— 6/ 4 gt + paa
Hence the tangent-cone at the double-point is N\

pa'y +qx'?=0. O
o\
In general it is 2 conical point; a binode if g=0 and a unodenpp=o.
N/

%

Ex. 2. Show that the cubic surface N
ayzow + bxzw +exyio+ dxyz =0 &

has four conic nodcs.

Ex. 3. Show that the tangential equatu.ir.l\of the cubic surface 10
Ex.zis AN

(ad)t + (o)t + (D)D) =0,
and that it is of class 4. ;

Ex. 4. Show that the qua;ﬁ’é.’ .
A (w322t (You? + 222%) +v (22w +a%y%) =0,
where A+ p+v=0, haﬁ}welve conic nodes.

N
Ex. 5. Inthe ass}mblage of tangents at a node show that {if n> k!
there are six witich meet the surface in four coincident points. -

Ex. 6,\3}{0\&' that the cubic surface 3xyz+kew®=o0 has three
bino%@,\:;ind that it is of class 3.

'»}1:7-54. When 2 surface F has a conical point, or singular point
...(at which there are co tangent-planes touching a cone, the reci-
\ 9, “procal surface @ has a singular plane which has oo points of
contact lying on a conic. This singularity is called a trope. 'The
tangential coordinates of a trope satisfy the equations
oD o0 odr oD
TETO HTO T T .
Corresponding to a binode we have a tangent-plane with two
points of contact (double tangent-plane). A double tangent-plan®
in general meets the surface in a curve having two double-points.
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Ex. Find the tangential equation of the anchar-ring
F={x?+32 +2%+(a* —b%) w?f?~4a® (*+ y*) P =0,
Show that it has twe conical points and two tropes,
Ans. {@*= ) (E+ 97 —-b3+ w2}2=4a?w2(§2+n2).

17-55. If a plane section of 2 surface is a curve having a
double-point at O, either the surface has a double-point at O ot
the plane touches the surface at O. If the plane section has two
double-points the plane either passes through two double-points
of the surface, or touches the surface and passes through a ¢
double-point, or is a double tangent-plane, touching at twe.\
points. If the plane section has three double-points, and the
plane does not pass through any double-points of the sysface;it
is a triple tangeni-plane or tritangent-plane. One condition is
required in order that a given plane may touch the glatface, hence
a surface has co? tangent-planes, and these englop the surface.
The condition, expressed in terms of thedcéordinates of the
plane, is the tangential equation of the sdsface (11:3).

17-56. Hence also 2 surface witheut double-points has in
- general a single infinity of double tangent-planes; these form the
planes of a developable doubly ‘circumscribed to the surface,
or bitangent developable. Fiwther, a surface without double-
points has in general a fiiite number of triple tangent-planes;
and in general has po'tangent-planes of higher multiplicity un-
less it is specialisedh YA quadric suzface has no_d0.|1b1e tangent-
planes, for a copitin order to have two double-points, must de-
generate o tyo coincident straight lines. A cubic surface may
have doqb{&\tﬁngent-planes, but the line joining two ponts of
contactust lie entirely in the surface.)

1757 The reciprocal relations may be deduced frorq t.he
‘fangential equation. The assemblage of planes through the point
P=[x', 3/, ¢, w'] tangent to the surface O£, 5, L, wy=0is re-
presented by the simultaneous equations

O£, 9, {, w)=0; x’§+y’n+z'§+w'cu=o,
P to the surface, a cone of
face. If the point P lies on
¢ tangent-plane. at Pasa

and forms the tangent-cone from
order m equal to the class of the sur
the surface, the tangent-cone has th
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double-plane; and conversely if the tangent-cone from P hasa
double-plane, either this plane is a donble tangent-planc for the
surface or P lies on the surface. If P does not lie on any double
tangent plane and the tangent-cone from F has two double-
planes, P is a double-point on the surface; and if the tangent-
cone has three double-planes, Pis a triple-point. A surface with-
out double tangent-planes has in general a single infinity of
double-points (binodes), forming a double-curve on the surfages,
and a finite number of triple-points, A

17-6. 'The curves which lie on a surface arc of inféyest; we
shall consider in particular straight lines and conjesy, *

We have seen that a quadric has two singly inﬁﬁ fte'systems of
straight lines, a cubic surface (not ruled) has\a finite number,
while a surface of higher order does not_ighgcneral possess any
straight lines, \\

A conic in space is determined by-eight conditions: three to
determine its plane and five to detezmiine it in the plane. & conic
cuts a surface of order # in 2#fpdints, and if it contains an+1
points of the surface it willdeventirely in the surface. Forn=2
therefore only five conditibns are given in order that a given
conic may lie on a giten quadric surface, hence there are oo?
conics on a quadri,o{’é%e for each plane in space. Forz=3, seven
conditions are réguired, hence a single infinity of conics lieona
cubic surfagel YFor #>13, more than eight conditions are res
quired, thefefore in general no conics lie on a quartic or any
surface/df higher order. The plane which contains 2 conic lying
on ‘a'cubic surface cuts the surface also in a straight line; the
g:c;‘fﬁ‘c and the line form a cubic curve having two double-points,

~~hence the plane is a double tangent-plane. Thus, as we have seen

3

already, a cubic surface in general has a single infinity of double
tangent-planes. There is, however, only a finite nuraber of lines
since through each line pass a single infinity of planes, thus
accounting for the single infinity of conics which lie on the sur-
face. A ruled cubic has a single infinity of lines and co® COMICS:
~ A quartic surface which has a double-line contains %0 COTLCS,
since every plane through the double-line meets the surface
again in a conic, There is a remarkable quartic surface, the
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Steiner Surface, which contains co? conics. It is known that the
only surfaces which contain co? corics are the quadric, the ruled
cubic and the Steiner surface. '

We shall consider now some general properties of ruled sur-
faces, and in particular the ruled surfaces of the third and fourth
orders.

17-7. Ruled surfaces.

17-71. A ruled surface is generated by a straight line having
one degree of freedom. It is therefore the complete or partial )
intersection of three complexes. Let the degrees of the thiree "
complexes be 7y, i, #g, then, since 'in general there js-one
generating line through every point of the surface®,An erder to
determine the order of the ruled surface we have§t}) find the
number of generators which meet an arbitrary lie. Let (a) be

 the line-coordinates of the line, and (p) Ahbse of a generator
which meets it. Then Tap=o0. But(p) plk;o‘éatisfy the equations
of the three complexes .
$1(p)=0, $a(P)20:" Bs(p)=0
which are of degrees #;, #3, n&fqépectively. They also satisfy' the
fundamental quadratic equation w(p)=o. These five equations
determine the ratios of thévp’s and give 2m solutions. The
order of the ruled susface is therefore 25,%%.

Ex, 1. The lings tommon to three linear complexes form one
regulus of a quadeie.

Ex. 2. Showthat for all values of  and v the linear complex
tpyy Uy 4Py -+ Pr, = O coNtains one regulus of the quadricxy — ¥ =0
and upb\-i- Py + Pog — P1y =0 contains the other.

tors which the regulus =)z,

Ex3. If the two pairs of genera !
@}y has in common with the tinear complexes Za;py=0

PN

\ \&by; py= o are harmonic, Show that _
2 (dy by + s bor) = (A= ttyg) (bos B}

: : Jane or
Ex. 4. The lines which meet each of th_ree fixed curves, p
skew, of orders n,, n, # respectively, is in general 2 ruled surface

of order 27, nyn;.
. 0o [ines through
* In the case of a quadric there appear t0 be two gte;i?uin\i;mﬁe:ear omfl—
every point, but only one set (a regulus) belongs £ nrsidegred as directrices
Dlexes ; with regard to these the ather set must be o i
(see 17.97), :
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1772, Let F(x, y, 2, w)=o0 be the equation of the surface and
(") an arbitrary point on it. Through this point there is a gener-
ating line; let (x”) be any point on it, then {x’ - Ax") must be a
point on the surface for all values of A. Expanding by Taylor’s

theorem
P +2", )= F(x, )+ 2 (o o

(x"D,}F=o0 is the condition that (x") should lie on the tangent-\
plane at (x). Hence the generating line through any point Pylies
in the tangent-plane at P, and conversely the tangent-plafig 2t any
point P contains the generating line through P. 'L'hete is there-
fore a (1, 1) correspondence between the range g points on a
generating line and the pencil of planes consisti”l‘% of the tangent-

planes at these points. O

1778, An arbitrary line [ cuts the sg(f{a’}e in 7 points; through
each of these points there passes a)gencrating line, and cach of
these with { determines a tangent-planc passing through l. Also
every tangent-plane which c@htﬁins I contains onc of these
generating lines. Hence théreare # tangent-plancs through the
arbitrary line /, and thgreféfe the class of the ruled surface is equal
fo its order. Either of. pﬁese may thercfore be called the degree of
the surface. The ééiprocal of a ruled surface is a ruled surface
of the same degrée. The degrec of the equation in- point-
coordinates, {8;€qual to the degree of the equation in plane-
coordinatgs.” :

1774, The order of any plane scction of a surface is equal to
the‘order of the surface, and the class of any tangent-cone 15

~equal to its class. Consider the class of a plane section. T his is

N
h
\ }

“equal to the number of tangent-lines through an arbitrary point
and lying in the plane. But this is equal to the degree of the
complex of tangent-lines to the surface, or the degree of the
equation in line-coordinates, Again, the order of a tangent-cone
is equal to the number of generating lines of the cone which lie
in a plane through the vertex  this is also the number of tangent-
lines of the surface lying in a given plane and passing through 2
given point of the plane. This number is called the rank of the
surface. (This applies whether the surface is ruled or not.)
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1775, Consider any plane section of a ruled surface, not con-
taining a line of the surface. There is a (1, 1) correspondence
~ between the points of the section and the generating lines of the
surface, since each line cuts the plane in one point. Hence there
is a (1, 1) correspondence between the points of any two plane
sections. All plane sections are therefore of the same genus, and
this is called the genus of the ruled surface. Thus, if any section
of the surface is a rational curve, every plane section is rational
and the surface is rational; a point on the surface can be ration-
ally represented by two parameters, one for the generator through'\y
the point and one for its position on the generator. O

17-761. A plane (tangent-plane) containing 2 generatdr giof a
ruled surface of order n meets the surface again in 3 plane curve
of order 7— 1, and this curve cuts g in #— 1 poiritgythese are all
double-points on the complete curve of intersection of the plane
with the surface, and are either points of{centact of the plane
with the surface or else double-points othie surface. Now atan
ordinary point on the surface therg;ié'a: unique tangent-pla{le,
and reciprocally an ordinary taggent-plane has a unique pomt
of contact. Of the n—1 doublespoints on the curve of inter-
section with the tangent-plan, “one is then the point of contact
and the remaining #— z.points are double-points on the Surf?.CB.
By varying the tangent-plane we obtain a locus of double-points
which form a dotble-turve on. the surface.

17762, Siﬁai‘léi-iy the tangent-cone from a poin_t P of th.:: sur-
face consist§of the pencil of tangent-planes having as axis the
generat&{é’fhrough Ptogether withacone of classn—1. Thr‘oulglh
g therddre 7 — ¥ tangent-planes of this cone. _One of these 15 t le
tgﬂg:eﬁt-plane t0 the surface at P, the remaining #—2 are double

£ téngent-planes of the surface. By varying P we ob.tam an as-
Sémblage of double tangent-planes which form.a bitangent de-
velopable of the surface, Every generating line f:uts.the double-
curve in # — 2 points, and through every generating line there are
n~2 planes of the bitangent developable. o

17-963. If the surface is rational an 3rb1trary plane sechion lj
a rational algebraic curve of order n, and this has & {n— I{)i(“ ;lz-
double-points. This must therefore be the order of the dou
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curve on the surface. More gencrally, if the surface is of genus
p, an arbitrary plane section has & (n- 1)(n—2)—p double-
points, i.e. the order of the double-curve on a ruled surface of
degree n and genus p is 3 (n— N)(n—2)—p. Reciprocally, this is
‘also equal to the class of the bitangent developable.

17717. A curve on the surface which is met by every gencrator
is called a directrix curve; reciprocally, a developable on the sut-
face, i.e. all of whose planes are tangent-planes of the surfase
and such that through cvery generator therc is at least ondpldne
of the devclopable, is called a directrix developable, '|'hg double-
curve is a directrix curve, and the bitangent degalﬁp'able is 2
directrix developable. In general any plane sctibn, not con-
taining any generator, 1s a directrix curve, \

A ruled surface may be determined by thixee directrix curves,
and if these are of orders m, =, p, the degret of the ruled surface
is in general 2mnp. If, however, thfaeurves intersect or have
multiple points the degree of thé Surface is lowercd. In par-
ticular if the surface has twa;l’:ﬁe-directrices a, b, and 2 plane
curve K of order m which’c,tft‘s*each of the lines in a single point,
A, B respectively, part of the complete assemblage of Jines which
meet @, b and K co:ls(s{s of the planes B and bA, and the order
of the surface isgeduced by 2. More generally, if A, B are
multiple points&t K of multiplicities « and f, the order is re-
duced by ¢ 8+-For a ruled surface of order s, which has two line-
directrice§’ a, b, it is always possible to choose a plane gection
(curve-oforder n) as a third directrix. The condition is that the -
cug{én'f section should have multiple points wherc it is cut by
.a'.'and b, of multiplicities « and 8 such that e+ B=n; the two lines

¢“Smust then themselves have these multiplicities on the surface.

\
) 4

Thus for a cubic surface with double-line  as dircctrix (nod:_ll.
directrix)and a single directrix-line /',an arbitrary plane sectionis
a cubic curve cutting I’ and having a double-point whereitcuts L

17-78. Ruled cubics.

For a ruled cubic the double-curve is a straight line J, and 7€t~
procally the bitangent developable is of class one, i.e. it consists ¢
a pencil of planes through aline I'. We have to consider whether
Iand I may be (a) intersecting, (b) skew, or () coincident.



Xvil] ALGEBRAIC SURFACES 183

7 and I are both directrix-lines, hence (a) if they intersect,
every generator lies either in their plane or passes through their
point of intersection. The surface would thus degenerate to
cither a plane curve or a cone. '

We shall consider as the general case () that in which [and 7'
are skew. A plane w through [ meets the surface again in a
generating line g; every such plane is a tangent-planc, 1t point
of contact being the point P i which g cuts . Every general
point P on [ is a binode, and there is a second tangent-plane at
P. The pairs of tangent-planes which pass through 7 form ‘z\uis. A
involution, and the double-elements of this involution ‘are
tangent-plancs at two unodes, C and D, cuspidal points of piich-
points on L. These may be real or imaginary. O

The tangent-cone from a point P’ on I breaks up into the,
pencil of planes with axis I’ (counted twice) de ahother pencil
of plancs through a generator g. P licso ihe surface and the
tangent-plane @’ at £ is the plane (g'&) Every plane through
! is a bitangent, and there is a.second.point of contact of the
planc & on 7. T'hese pairs of poir{tsﬁn J form an involution, and
the double-points of this invqh:ttidn are two points, 4 and B,

on . N
et P be any point ond; “nd let the two tangent-planes at P

" cut ! in P’ and O P\Rf Jand PQ’ are ger.lerating lines,’a:}d the
plane PPQ)’ meetsrﬁie surface in a cubic curve consisting of
three straight lines’and having three double-points. P is the
intersection,dt this plane with the double-line 1, therefore P ’anfi
()’ are thestwo points of contact of the bit‘angent plane PP'Q".
Againg J is any point on 7 there is a unique tz.mgent-plane at
P \)’l’i"i\ch cuts [in a unique point £ Hence thf.:re isa L 2) corre-
oép@idence between the points of 7 and the points of I’ ThrOl:lgh

Ngvery point of / there pass two generators, apd through every

point of I’ one. The pairs of points on r w}%lch corresponFl to

points of I form an involution which may })e-elther hyperbaolic or
elliptic. 'The simplest algebraic expression c.)f a (1, .,2) corre-
spondence in which the involution is hyperbolic 18 £=4" Taking

las x=0=y, I' a8 g=0=®, P=[o,0, 1, t] and P=[n 1,0 O}f

so that f=w/z and u=x/y, the equation of the ruled surface 13

a2y —yhw=0.
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This (1, 2) correspondence may be produced geometrically as
follows. Let C be a conie which cuts [ in one point O, but does
not cut 7', The ruled cubic is generated by lines which meet 7,
and the conic. Let P’ be any pout on I': the lines through P/
which cut { generate a plane which cuts the plane of Cina
straight line through O, and this line cuts the conic again ina
unique point @, and P'Q cuts [ in a unique point £, Starting
with P, the lines through P which meet 2’ generate a planc which
cuts C in two points Q, R distinct from (; OP and RPdup)' in
two distinct points P’, P”. o)

N

17-781. In the case {¢) where [’ coincides w.iéﬁ"f, as before
every point of / is a binode and every planefhirough Zis 2 bi-
tangent. But the involutions of pairs of tan worit-planes at points
on [, and pairs of points of contact pnt of bitangent-planes
through /, are degenerate. One plant, of each pair is fixed and
one point of contact of cach bitapgent is fixed, .- there is one
plane, say x=0, which is a taggent at all points of , and one
point, say [0, 0, 0, 1], whiche {s 4 point of contact for every plane
through /. The general qqﬁfion of a cubic surface with x=0=Y¥
as a double-line is '

_ Q ,
(@ +biy L aRF dy 1)+ (apt oy €% T )y’
N + 2(cyz +dsw) Ky =0

Every ling i* fhe plane x=o0 meets the surface in three coincident
points pin? Flence ¢;=0= d,. Also [0, 0,0, 1] 12 unode, there-

forxé\!éry plane section through this point has a cusp there.
Hénee dy=0. @ux+byy=0 is then any plane through / except

\ch’«:o, and we may take this for the plane y=o, thus chOUS’{Ilg
O g,=0. Also ayx+by+ozx+dw=0 is any plane not passing

through [0, 0, 0, 1], and we may take this for the plane @="0

"Then by suitable choice of unit point the equation of the surface

reduces to the form '
_ wa —y3+xyF=0.

This is known as Cayley’s ruled cubic.

Zx. Show that for the surface z (x% —¥%) —2xyw=0 the tangent:
planes at all points on the double-line g=3y=0 are real, while
for the surface afz—3Pw=0 the tangent-planes may pe real OF
imaginary. :
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17-79. Ruled quartics.

17-791. Among ruled quartics has to be included the de-
velopable whose curve is the general space cubic curve. There
is no developable, other than 2 cone, of lower order than the
fourth. The class of the quartic developable is three. If the
freedom-equations of the cubzc curve are '

xry:giw=rE,

the equation of the developable is K

(xm—ya)2—4(y2 — x2) (2" —yw) =0 O

17-792. The non-developable ruled surfaces of tha,t}'dif
order may be classified according to the nature of’th’lziiuuble—
curve and the bitangent developable. ’

When the surface is rational the double-chc;is of order 3.
It may be R

(@) A space cubic. (It could not be & piarle cubic, for then a
line in this plane would meet the surfgoe in six points.)

(b) A conic and a straight line..The plane of the conic cannot

contain any other points of the-aitrface, for any line in this plane

already meets the surface inlfour points. Hence the straight line

must meet the conic jn Gz point.

(6) Three dz’stz'nct.sr%zgkt fines. For the same reason as in (@)
the three lines canmof be coplanar. Nor can they be all mutually
skew. In factif 2 quartic surface has two mutually skew double-
lines @ andrhfand ¢ is a third line on the surface, skew to both, all

the trapsvetsals of ¢, b, ¢ meet the surface in more than four

poingsahd are therefore generators. But these form 2 regulus;
y s into two quadric surfaces.

hefide in this case the surface resolve

\lf“a“ll three lines are concurrent we shall see {17-93) that the sur-
face is the Steiner surface and is not ruled. If two of the (_.J.ouble-
lines intersect these form the complete intersection of their plane

with the surface and the third fine must meet one of t}wm. We
have then two skew lines 1 landa third line g meeting bath.
No generating line cuts £, for a plane thml:lgh g meets the.surfaﬁe
agéin in a conic and this cannot break up into two lines since the
surface has no other double-points. But every generating line

25
SAG
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meets either [ or g and either I’ or g, therefore it meets both {and
I'; these are thercfore directrix lines, g itself is one of the genet-
ating lines.

(d) Three straight Iines of which two are coincident (directrices),
and one double generator mecting 1t. :

(&) Three coincident lines, L.e. a triple line.

The bitangent developable, in general () a quartic develapg
able on a space cubic curve, may be specialised similarly ag ('
quadric cone and a straight line (1.e. pencil of planes), orthree
straight lines, {¢) distinct, (d) two coincident, or {£)all deancident.

In the case of the elliptic ruled surfaces of the folitth order the
double-curve is of order 2 and can enly bg'\ci'ther two skew
directrices, ot 2 directrix counted twice. M<@\guartic surface has
2 double-conic it is necessarily rational (8¢ 17°95).

This classification is carried out by@’iﬂ. L. Edge, The theory of
ruled surfaces (Cambridge, 1g31)pwio enumerates ten rational
ruled quartics and two elliptic.\ Cayley at arst enumerated only
eight, but later added twdy which he had overlooked. His
memoirs on *‘ skew surfaces, otherwisc scrolls’” are contained in
vols. v and vi of his Gollected Papers; they were written between
1863 and 1868, o)

Ex. 1. Shoyv\h\at the locus of bisecants of the cubic curve

@ x:y:z:w=i3:t‘3:i:1
which/belopg to the linear complex ZXey Py =0 is
N ¢ i
) \'\\"v'lz‘f’l2 e b = Con b’ —egathadst(Cn T Con) PP a1 dre=0s

R\ ~where =z =Y, Pa=XR—YE by =YW — 3

\ W4
) 4

Q

and that the linear complex to which the ruled quartic Say b =0
belongs is ' '
gy P+ 2608Poz T FxaPoa (@3 +26g;) Pas+ 212l ™ 1 P12 ="
Fx. 2. In Ex. 1 if the complex is special, so that
Ty + 20aq By — 4thasTi2 T G T o,

show that the surface has also a directrix-line ; through ever’Y-POmt
of I there passes one generating line and through every point ?f the
cubic curve two. Show also that the bitangent developable 18 the
pencil of planes through  counted three times.
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fx. 3. Show that
a2y =ty (ax+ by) + 2w (cx+dy)

is 2 ruled quartic with a triple line and that the bitangent develop-
able is a proper quartic. '
Show that the tangential equation is

§{ad —bc) 2~ w (bE+ an)} {{ad —bc) 72— L (dE +en)}
_ ={(ad — be) én — c& — by — L.
Ex. 4. Show that

wry? = (ax+by) (x*5+y'0) R
‘has a triple line, and that the bitangent developable consigtg';,o}‘ a

)

pencil of planes through this line, and a quadric cone,
A

Ex. 5. Show that
atz (ax +by) +y°w (e + dy) =9\\:
has a triple-line / and that the bitangent deglopable is 2 pencil of
planes through another line ' counted hiree times. (Tangential
equation _ R Nl
_ £ (d6 —on)—nPw (BE> an)=0-)
Ex. 6. Show that N

et U Cid +;7,’Bx;;;’+ Cy?) (xz+yw)=0
has a triple line / and thétythe bitangent developable is a pencil of
planes through £ counted. three times. (Tangential equation

[ R AL + 2Bl Co?) (L +ne)=0)

AY - . .
% that the lines joining corresponding points of two

Ex. 7. Show, !
conics whieh'z}e in (1, 1) correspondence generate 2 ruled quartic,

Fx. §\If C is a conic and [ a line meeting it in one point P, and
theirtpoints are connected by a (2,2} _correspondence in w?n_ch‘ P
_cofresponds to itself doubly on both loci, show that the lines joining

\cc‘rr}esponding points generate a ruled quartic.

Ex.g. Show that _
xzz'3+a.xyzw+(bx+cy) yuw'=

has three double-lines.

Ex. 10. Show that a ruled quartic with three dogble-lin?s (one a
generator and two directrices) is generated by the lines wt'x}ch l:nlect
two skew lines and a conic which has no point in common ¥ ith either

of the two lines.
25-2
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Ex. 11, Show that _
(xz —yB)P+a (x3—37) yw+ (b + cy) yut=o
has a double-line and a double-conic.

Ex. 12. If 2 cubic surface has a double-conic it degencrates to'2
quadric and a plane.

Ex. 13. Show that z (x® —3*) —2xyw=0 is a ruled cubic in which
the involution of pairs of points.of contact of bitangent planes is
elliptic, and show that if P=[o,0,1,1] and P =lu, 1,0, 0p 48

corresponding points on. the double and the single dircetrix Fe-
spectively, #® —2tu—1=0. (\)

" Ex. 14. Show that the equation of a ruled cubic canﬁc‘exprcssed
in the form N

ax?+ Byt +2yxy =0, \ R

7

R4S
-where o, 8, y are expressions of the first dcgrec.m\x,y, 2, W

Ex. 15. Find the tangential cquations of t\he cubics
) st wyt=o, (i) & (32 —y7) —2aym &Y (i) wt+ayz—y'=o.
Ans. (i) L+ wn?=0, (i) o{87%) +aénl =0,
{iii) fw?+ ndw+ F=o0.
Ex. 16. Show thata quadrjé:s}{n"face is generated by a straight line

which meets a fixed conic aftd two straight lines each of which mects
the conic in one point,

Ex. 17. Show thaft\le Tines joining corresponding points on two
skew lines which are in (2, 2) correspondence generate a ruled
quartic (in ggpera:l irrational). -

Ex. 18.>8héw that

) O (xe0+ yz -+ azw)t =zw(x+ v)?
hac e doable-line and a double-conic, and that the bitangeat de-
}rf;‘l'cﬁbablc is a pencil of planes counted three times.

3% Ex. 19. Show that

(ya—xy+ axw)?=x2 (x — =)
has two coincident double directrix-lines and a double generator.

17-8. Cubic surfaces.

Analytically, the general cubic sutface is the locus of the
general homogeneous equation of the third degree in &, ¥, % ¥
Geometrically, there are several ways in which the surface may
be generated. We know that a conic can be generated b}f_the
intersection of corresponding lines of two retated pencils 108
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plane; a quadric surface is generated by the line of intersection

of corresponding planes of two related pencils with axes mutually

skew; a space cubic curve is generated by the point commen to

aset of corresponding planes of three related pencils whose axes

have no common point. If in the last case the planes have each

just one fixed point so that they have two degrees of freedom,

but are still connected mutually in (1, 1) correspondence, the

locus of their common point is a surface, and, as we shall show, ~N
it is a cubic surface. A

17-81. If O is a fixed point and «=o0, =0, y=0 represe@t"‘.\

three plancs through O, any plane through O is represented by

the equation Jx+mf+ny=o0. IfO'sa second point the planes
through O, Fa'+m'f'+n'y' =0 say, are correlated ¢to those
through O when [, m', #’ are connected with s, n by linear
homogeneous equations of the form P =al+Bym+on, where

@, b;, ¢, are constants. To each plane t.}%@@h O corresponds
uniquely a plane through O'-and vice Bersd. Ifo', 8, 9 are the
planes which correspond respectively to @, B, y the equations of
correlation are simply I =al, m'&bm, n'=cn. Changing the
notation, let O, and O, be the jc'wb" fixed points, &, B, » three
given planes through O and & . B,y the corresponding planes
through O, so that to the\plane £'o€1+??151+?3)f'1=0 t.hrough _01
corresponds Jao’ -{—;Kbg—}- ney' =0 throug.h 0,. Then if we write
oo, Bs, e for az’, BBy the corresponding plane through 0,18

Ing+ 1By + iy =00 Similarly we have a correspondi'ng’ plz.me
log+mBs+ ‘3}—'\0 through a third fixed pomnt Q. E.Jhmmat}ng
1, m, n betwden these three equations we obtain the cubic equation

O oy B 1 7 ) =0,
N° v Ba o v2|
O
\m y Log Bs 7
which represents the locus of points common to three corre-

urface passes through each of the points

; . Thes
sponding planes © s when ¢, =0=5=71,

0,, Oy, O,, sincethe determinant vanishe

etc. o
17-811. We have still to discover a geometrical detern?mau?ln
of the correlations between the bundles of planes. Consider the

- =o. Each
quadrics Biyea— Beyvi= 0y it ™ yptty =0 and «, Bz afy=0. kac
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pair has a line in common, viz. the first pair has the line yy=o=1y,
in common, and the residual intersection is a space cubic curve
which is common to the three quadrics and lics on the cubic
surface; it also passes through the points o;=0= Bi=v, and
sty=0=fy=7,, Le. O;and O,. An arbitrary planc
b, +mf, -Fny; =0
through O, cuts the curve of intersection of the two quadrics
Brye— Bay1=0, 10— 20 =0 .
in four points; one of these is 1ts intersection with the li;l'é"g\

L ™

7

’}’130:“/2, ~d

one is the point gy=0=F =y, i.e. Oy} eliminating 7; and £

(v, and v, being 0} we find to determine thax}tﬁer Uwo
Tty + m Py 4 myy=0.

\J
Hence the corresponding planes \\
foo, + ?ﬁﬁl—“?ﬁ?ﬁ;—'—-b
and Iny+mBy K y2=0

cut the cubic curve in the sathe two points.

Finally, to generate the CUblC surface we take two space cubic
curves C and €' both gfssing through a point O. An arbitrary
plane through O cujﬁ“fhe first cubic in two points 4, B and the
second in two poifits 4’, B’. The cubic surface is the locus of the
intersection of @B and A'B'. ' :

We may weiify as follows that there is a unique cubic surface
which ceitiins two space cubic curves having one point O it
comp\ém\:“If nine other points are taken on each cubic curve we
obt?.i}l nineteen points and these determine a unique cubic sur-

_face; but this surface must contain each of the cuhics, for a cubic

N o

gurface can intersect a cubic curve in only nine points while this
has ten points in common with each. '

17-82. We can now prove that every cubic surface i rationdl,
i.e. can be rationally represented on a plane. To every plane
Za1+m181+?3}’1=0 .
through O, there corresponds a unique point P on the surface
and also a unique point P’ with coordinates [/, #, n] on a ﬁxeld
plane. Conversely, if P is any point of the cubic surface there1s
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through P a single bisecant of each of the cubic curves and each
of these determines with O, the same unique plane,
Algebraically, the three equations
ley +mB 4+ ny, =0, log+mpy+ny=0, Iy, +mfy+ny,=o0

which are linear and homogeneous in x, y, 2, w can be solved
for the ratios of x, v, %, w, and thus the coordinates of any point
on the surface are expressed by homogeneous polynomials of the
third degree in /, m, .

17-83. We have seen that a cubic surface has a finite numbet \)
of straight lines, It has also, like any algebraic surface, 2 ﬁﬁite
number of tritangent-planes. A tritangent-plane cuts the gurface
in 2 cubic curve having three double-points and thergfore re-
ducing to three straight lines. If /is a line Iying od {he surface a
planc through I cuts the sirface in this line andya conic; these
form a plane cubic curve having two doubleppints. Hence if /
does not pass through a double-point of hi& surface every plane
through / is a double tangent-plane.\ Conversely, a doul::le
tangent-plane meets the surface in i séraight line and a conic.

. The bitangent developable theg'a}fbj‘é consists of a finite number
of pencils of planes whose axesiare lines of the surface.

17:84, Through eaclyl{{ie of the surface thf:re pass a ﬁn.ite
number of tritangent-planes which ate determined by forming
* the condition that the\esid_ual conic should break up into a pair
of straight Iines.\“'.".
If we take,#=00 = as one line of the surface,
the surfacess/of the form

O ap + 2rp=0,
Whﬁt'é&:i') and i are quadratic expressions. A plane w=px through

fhisline cuts the surface again in a conic which is the inter-

Séction of the plane w=px With the quadric cone

‘ '+ b’ =0, o
#’ and 3 being the expressions obtained by 5“]?5t1_tunng w=“;
inand . ¢’ and ' are homogeneous quadratlcs inx, ¥, 2, an

. R ain u to the
in each the coefficients of x? yE: 2%, yz, ’%, XY contt ofp;he de-
powers 2, 0, 0, 0, I, I respectively. The elements

terminant of ¢+, whose vanishing is the condition for

the equation of

A

Q.
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factorisation, are functions of p of degrees according to the
scheme

3 2 2
2 I I.
2 1 1

Equating this determinant to zero we obtain an equation of the
fifth degree in p. Hence through any line of the surface there are,
five tritangent-plames.

N
. . S O N
17-85. Consider now the double-points on a cubic suifice.
Writing the equation in the form L™

0" 3
< 3

Fotwlyt+wtF+uFy=0, 0

A\

the origin O=]o, 0, 0, 1] lies on the surfacg if"’I}o:o, and is a
double-point if also Fy=o; it cannot he a 'gr{ple—point unless the
surfaccis a conc. When Oisa double-poitfg)f’,= o rcpresents the
quadric cone of tangents at O this is'cu'jﬁ by the cubic cone Fy=0
in six lines which meet the surface in¥6ur points at O and there-
fore lie entirely in the surfaceg~Hence through « double-point

there pass six lines of the surfdve.

Conversely, if three lipes of the surface, not m @ plane, pass
through a point, this pent 15 @ double-point. Let OX, OY, 0Z
be lines of the s@rface. Then since the equation 18 satisfied
identically by y 2o =% and by z=0=% and by x =0 -=9, it 8
of the form 3"

N Fo+wF,~=o0,

7\

th};ééﬂ; =Sayz and Fy =Zey? 2 + dxyx. Hence O is a double-
point. |
£\

\“17.861. We can now find the number of lines on 2 general
cubic surface without double-points. Starting with a tritangent=
plane we obtain as its intersection with the surface three lines
a, b, ¢ forming a triangle ABC. Through each of the lines @ b, ¢’
there pass four other tritangent-planes, each meeting the surface
in three lines, and since no other lines besides @, b, ¢ can pass
through A, B or C we have 3 X4 X2=24 jines in addition to the
first three. And besides these 27 lines there are no more, for 1
7is any line of the surface other than g, b or ¢, it cuts the plane of
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abe in a point lying on one of these lines and has therefore been
enumerated among the 24. Hence there are precisely 27 lines on
the surface. These lines may not all be real.

The following equation® represents a cubic surface with 27
real and distinct lines: '

(ﬁ“._rrl_i_i_,_ﬂ) (_”‘.z__ﬂ)
Xy Yo R Wy WM Nl
BV LB V(L JE)
—<x1+3’1+31+w1) (xazz Yoty ) ’,\*\
17-862. The number of tritangent-plancs is now easily dex ™
termined. Through each line there are five tritangent-planes,
and each tritangent-plane contains three lines, hence Ehg:fnufhbar
of tritangeni-planes=3} X § X27=45- AN\ ]
The 27 lines and 45 planes and their poinfs efrintersection
form a configuration which is represented'b’)Qtﬁe scheme

"S
135 10 27N
2 27 43
9 3NV45

Each line is met by five p'a"rrs‘ Sf other lines in the five tritangent-
planes through the ling; :bherefore N, = 10. Through each point
there are two lines &&\b vind through each of these there are four
other planes besifles the plane (ab), bence Nyp=9. Also on .each
line there are &en points, cach of which belongs to two lines,
hence the tutal number of points is 135-
17-8@:?’5(:]115&’5 notation for the lines on 2 cubic surface.
Lei a, and b, be two non-intersecting .lines on the surface.
Through each of these there are five tr}tangent-planes, eaf:h
\_éontaining two lines which cut the given Jine. Denote the pmrsj
of lincs which cut @; by s, €125 by, 135 bay €14 by, €155 De» C16- Any
other line must cut each of the five planes, and must therefore

cut one of each of these five pairs of lines; hence by cuts, sa},-',
€125 C13» C1a1 €13 and c;q- Fience auy fepo non-intersecting lines of the

surface have five common transoersals on the surface. Denote the

1 L cubte surface, Cam-
¥ d , The twenty-seven lines upon 1
bl‘idgicélf:a.ciﬂ}\lg?s?g (1gr1). Also Cayley, Collected Math. Papers, Vi,

316—30 znd VI, 3597453-
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remaining five lines which intersect b by @, @3, G a5, Gs
pairing these respectively with ¢y, ..y Cie-

We have now 17 Jines such that @, cuts &, ..., by, €y ooy C1as
and by Cuts @y, ..., @gs C1ay -+-» 16> and they form 10 tritangent-
planes. Each line of the surface cuts one and only one line of
each triad. Hence since a, cuts b, and ¢gp, it does not cut
fy, gy -y gy Cizy oo €165 D25 and since @, docs not cut 4 it
must cut by, ..., bg. Similarly b, cuts ay, @5, ooy &5 and ¢,,. Thus,
of these 17 lines we have 12, ¢; and b; (i=1, ..., 6), such thdta;
meets &, (i# 7} but does not meet b,. Of the other fireNlines
6:(i=2,...,6), each meets both a; and by, @; and b;.. .

Now each line of the surface is met by five pairs of inter-
secting lines ; but so far a, is met by just one paipdy and cpp, and
four single lines by, by, b5, by, 10 two of whitiN¥itersect, Hence
there are four other lines, Say ¢o, Cag» C25+ GiayPAITING respectively
with these. Now b, meets one of each.}}f;the triads: g, b5y Cas
g, by, oy Gay Bs, Ca55 Qo g, Cogs antl since it dees not meet
@y, by, by, by or by it must meet_ Gy “Cogs Co5 a0d g Further, @,
does not meet @, or by, therqf@f’é it meets cyy; similarly @, meets

a4, Qs MeEELS o5, ANd @5 MEETS 6.

P

N\

We have now a, cut bi'the two pairs by, 6,5 and b, a5 and also
by by, b5, by, DO twg“iﬁ which intersect. Flence we have three
more lines, say sy i (a5, Cag, paired with these. Then by the same
reasoning b, méets these three lines, and as a, does not mect 4,
or by it mughineet ¢a; similarly a; meets ¢z and g MECs o

ay is néw cut by the three pairs by, €143 bay Coa3 s Cas and by
by angl\lws\\i;hich do not intersect. Hence we have two more lines,
say\byyand ¢y, paired with these. '
~Lastly we have the line ¢ meeting a5, @, b5 and b.

\* We have now obtained the 27 lines «,, b; (I=1; == 6}
¢y (i#j=1,...,6), and the whole scheme of interscctions is
given by the statements that

a; meets b; (i# 1),
a; and b; meet &5,
ci; Meets ¢y (1% fEk#ED.
The 45 triads which determine the tritangent-planes are

10 of a;b;ciy, and 15 of ¢y¢xcmn.
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17.87. The sct of 12 lines i
@ 4y ... ag}
. b, by ... by
v.-hlti}} are such that each one intersects only the five which do
not lie in the same row or column is called a double-six. There
are 36 of these, the others being of the types
a b €3 Coa C25 Cze}
; I
@ Dy Cip € €15 Ci8 ( 2

and. Gy Gz Gy Cse Cot €15 .'\:\
€ Cs €2 D bs bs} (20) \ O
To determine a double-six take two non-interseefing lines,
say a; and a,; write down the pairs which intecséet them :
a, meets by (b)) (B0) (bs) ) '
(c12) € O Pi-'g\\ élﬁ
o meets by (b)) (YR (4
_ (cu) € o Con) o5 Coe
Then delete the symbols of th,e.’l’iil"es which are common to the.
two sets. @ is then taken with the remainder of the lincs which
meet a,, and vice versd. N '

17-88. Classificationt of cubic surfaces according to the
reality of the 27 lines.
The surface(Deing assumed t0 be general (without double-
points), and\fhe 27 lines a1l distinet, the reader may verify that
there a;gifh"e following five cases:
‘Q\) All the 27 lines real and all the 45 planes real.
N 2) [Every imaginary line of the first species, 1.e. meeting
~O its conjugate.]
N Three reat lines (forrhing a triangle), 13 real planes,
' 15 real points (12 elliptic and three hyperbolic).
(3) [Some imaginary lines of the second species, 1.¢. not
meeting their conjugates.]
(3a) [The five transversa
conjugate imaginary lines all real.]
1g real lines, I5 real planes, 45
hyperbolic)-

Is of two non-intersecting

real points {all
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(35) [1Three real transversals. ]
Seven real lines, five real planes, 11 real points (two
elliptic and nine hyperbolic),
(3¢) [One real transversal ]
Three real lincs, seven real plancs, nine real points
(six elliptic and three hyperbolic).

17-89. The projective classification of cubic surfaces, without,
regard to the reality of the lines, is based on their singularitie
A cubic surface cannot have more than four conical poiﬂts;}'sr
the class is diminished by two for every conical point, 4nit! the
class of the general cubic surface is n{n—1)*=12. Ifsthiete were
five nodes the class would be reduced to two, buf/a'surface of
class 2 is a quadric. There are 21 species wheri"%e distinguish
hiplanar and uniplanar nodes, and whethef\Nthe plancs of a
binode contain lines of the surface, and sd s A conical point is
represented by C,, an ordinary binodéby B,, an ordinary unode
by s, other varieties by By, B;, B, Ly 7,. Thesuflixincachcase
denotes the number by which thedlass (12) is reduced. (All com-
binations are possible exccpt‘zﬁ;’; Cot+ Uy, Cp+ Uyand Byt )

Ex. 1. T'he surface NY

w (x4 y K2 (e +my +nz) - kxyz =0
has a single bined Qg at [o, 6,0, 1]. Find the equations of the
planes at the bingde #nd the six lincs through it.

Ex. 2. Theﬁﬁﬁf'a.cc
AN xaw — (% +2) (5% — 3%+ 2¥) =0
has a hinode’ B, at [0, 0,0, 1]. Show that the planc £ +2=0 touches
the syrface at all points of the edge of the binode (i.e. the edge 18
torsal it is a line of the surface).
B\ “Fx. 3. The surface
N xzw + 2z +aty—z¥=0 _
has a binode By at [0, 0, 0, 1]. Show that the edge of the binode is
torsal and the tangent-plane at any point of it coincides with one ©
the planes of the binode.
Ex. 4. 'The surface
' azee+yta+at -zt =0 :
has a binode By at [0, 0, 0, x]. Show that the edge of the binode is

gscular, i.e. one of the planes of the binode mects the surface in three
coincident lines,
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Ex. 5. The surface
w (x+y+2)°+xyz=0
has a unode Uj at [0, 0, 0, 1] whose plane meets the surface in three
distinet lines.

Ex. 6. The surface
© gt tasttyir=0

has a unode U, at [0, 0, 0, 1] whose plane mects the surface in three )
lines, two of which are coincident. Q)

Ex. 7. The surface ) O\

wxl x4 yd=0 o\
. &
has a unode T, at [o, 0, o, I] whose plane meets the surface in three
coincident lines. e \ I
. RY

17-9. Quartic surfaces. & _

17-81. There is a very great variety of surfaces of the fourth
order and we shall consider only a‘few typ /A quartic surface
does not in general possess any lines; a8 the other extreme we
have ruled quartics having an infinity of lines. It is known that
a quartic surface, not ruled, cannpflidve more than 8o Ime‘s, but
whether a quartic surface can{pessess so many lines w1th.out
being ruled is not known. L e Weddle surface (locus of vertices

of quadric cones through§ix given points) contains 25 lines, and

Richmond* has giv r‘\ém’ example
b K2y +y4=-z" — bzttt

which contains@8, only 24, however, being real.
17-911. {3}*" The Weddle Surface. Show that the locus of vertices
of guadyxie. cones which pass through the six pomis (1,0,0, o),
[0, 1,8, %], [0, 0, 1,0, [0, 9 % 1], [1, 1, & 1) [a, b, ¢, d] 18
LA (b— ) yr—w (o d) 3 {ey*—beF) S =) £ =0.
“Prove that each of the six points is a conical node and t]l}at tht;
Murface contains the 15 lines joining these pomnts, and th-‘i1 10 1_nc;s 0
intersection of pairs of planes each containing three of the points.

17:92. A quartic surface is not in genera_i rational, and there
e criterion for its rationality. There are three
quartics with

(z)a double-conie,

is no very simpl : .
main types of rational quartics, V1Z.
(1)a triple-point, (z)a double-line,

% Edinburgh Math. Notes, October, 1930
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But in addition to these there are some other isolated forms. We
shall confine our discussion of quartics to examples of these
three types of rational surfaces.

17921, A surface of order # which has a multiple point O of
order n is necessarily a cone, for any line through O and one
other point of the surface mects the surface in more than # points
and therefore lies entirely in the surface.

A surface of order # which has a multiple point O of ordée™
n—1 was called by Cayley a Monoid. A monoid of any order 13
a rational surface, for any line through O meets the suxfact in
just one other point; there is therefore a (1, 1) cor’r.e:sjbndence
between the points of the surface and the lines threugh O and
therefore the points of a plane. A quartic sugfiec with a triple
point is a particular case of a monoid. !

Ex. Show that if P and Q are muItiple’p\}xhts of orders r and s
on a surface of order #, and r+s>u#, the)ine P} is a multiple line
on the surface, of order r+s5—n. )Y

17-93. The Steiner surfqge;i’ 2
A quartic monoid of spdial interest is onc which has three
double-lines passing thitough the triple-point. Taking as the
triple-point {0, 0, ©, g.’j}nd as the double-lines y=0=3z, 5=0=4%,
x=0=y, the equition of the surface is of the form
ay? 24 bRt + exy? + xyx(fu+ gy + ha+ kw)=o.

AN i .
Changing,the plane of reference w=o, and choosing the unit-
poim\sﬁitably, the equation can be reduced to the simpier form

~~." 22?4 2% xt 4 a%yE — 2xyzw=0.
o ;The surface is named after Steiner who studied it during a visit
< to Rome, and it is sometimes called the Roman surface.

17-931. T'o obtain parametric equations write p¥=2/¥
py=2vA, p¥=2\, then we find pr=A2+p2++% From these 2
symmetrical form of the equation can be obtained, referred to
another tetrahedron. We have '

plwtxtry+2)=QA+p+v)?
plwta—y—2)={—A+pu+v) etc
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Hence writing

wta—y—z=X, w-xty-z=Y,

w—x—y+a=Z, wtatytz=W,

we have Xty

o

Vi Zt Wi=o.

17-932. This shows that each of the four planes of reference
X =o, etc., meets the surface in a conic twice. "These are not
double-conics on the surface, but each of the four planes is a
singular tangent-plane or trope touching the surface at all pointsy,
of the conic. 'The triple-point is [1, 1, T, 1] and the doublesines’

are Yz_\Z, X=W;Z=X,

Ve WW: X=Y, Z=W. .\

< 3

Exs 1. Show that the tangential equation of the SQeiimr surface

Yt =0 is DE-1=o0, and that

it is therefore of class 3. )

Fx. 2. Show that the Steiner surface is the\xc;iprocal of a cubic
surface with four conic nodes. \ &

Fx. 3. Show that the four conics at{ which the surface Sat=ois

touched by the planes #~=0,

of reference, and that the six poinﬁ%’of contact, one on eac

unodes,

17-933. Every plane sé'ctidn of the Steiner s

curve with three podé'sa\w

lines. The section hya tangent-plane has an 2
\o into two conics. As there are o0 tangent-

therefore breakeup 1

etc., towdh-the edges of the tetrzhedron
h edge, are

~

urface is a quartic
here the plane cuts the three double-
dditional node and

planes the suffice contains 00* conics.

I\
17:932,“In the (A, &, ¥)
\{..

are L
x1yiRIW=2

.\’~ 3 .
o plane section {x+7ny+ {2+ ww=0 18 repit

(A4 pt+77)

For the tangent-planes

The condition for this gives 4 : 0
; Z, o which is the tangential equation of the

third degree in &,
surface, viz.

-plane when the parametric equations

vt 2V 2Ap MY

sented by a conic

28 pv+ anpA+ 2LAn=0.

this breaks up into two straight lines.

homogeneous equation of the

o — o (£2Ent+ {7 H2Ene=o
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17-935. The parametric equations of the Steiner surface are
all of the sccond degree in the parameters, and conversely
freedom-equations of the second degree in genceral represent a
Steiner surface. Let px=U), py= (., px—,, pre—= T}, where
U, are homogeneous quadratic expressions in \, g, v, and there-
fore U,=o represent four conics in the (A, ¢, v)-planc. We shall
assume that these conics have no point common to all four.
There is then a pencil of conic-envelopes all in-polar to each €\
these. When we choose the triangle of reference so that thpfgur
common tangents of the pencil are +A+ g + r—o the tadgential
equation of the pencil 1s A2+ By*+ C{*—o with A x84 C=o.
The conic Y

¢’ &’
U=aX + bu®+ v+ 2fuv+2gvd L2k =0

is out-polar to every conic-envelope of the'pencil if a=b=c.
Hence U, are linear homogeneous fu fions of A2+ 2+
vA, Au, and by changing the tetrahearon of reference we ¢an
express the freedom-equations inythe'form

pX=2pv, py=2v, pf;;: 2Ap, pw=At+ ptt i

We have seen (g-731) that If the four conics have one point i.n
cornmon the param_et@:; equations represent a ruled cubic;_ if
they have two poing{ih common they represent a quadric; with
three points in.co wmon they represent a plane; and with four
pomnts in comgoh a straight line.

NS
17-94. The surface of Veronese.

T e:f:}éne.sections of a Steiner surface represent the conics of
a thfée-parameter system, T'he system of afl conics in a plane
dépends upon five parameters and would require space of five
dimensions for its representation. If x;(i=1, 2, ..., 6) are homo-
geneous coordinates in S, and U, are homogeneous quadratic
expressions in A, u, v, the equations

P‘x_'a'z Ui (?2 Iy ceny 6)
are parametric equations of a two-dimensional surface in S?-
This is called the Surface af Veronese. Simpler parametric

. N . . 3 1
. equations can be obtained by solving these equations for A% £%

V%, v, vA, Ap, considering them as six equations linear m_thes‘3
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six quantitics; each Js then expressed as a linear homogeneous
function of %, ..., %, and then by a change of the frame
of reference we may express the parametric equations in the
form - :

Py == )‘2! PXy = Ju'g! pXg= v, PRy 20V, pXy= 21"}‘: P = 21)(4“.

To every point in the (Apv)-plane corresponds a unique point in
S;, and to every point on the surface of Veronese corresponds a
unique point in the (Auv)-plane. AN

Any conic in the (Apv)-plane is represented by a homogenc@ilg"'
linear equation in x,, and is therefore represented in S; by the
curve of section of the surface with a four-flat, A threesflat cuts
the surface in points which correspond to the fgé(‘f)oints of
interseetion of two conics in the (Auv)-plane. Heteé the surface
of Veronese is cut by an arbitrary th‘ree-ﬂgté{l;four points, 1.6
it iz of order 4. : RS

An arbitrary planc docs not in genexdlgheet the surface in any
point, but since any three pnints’détei'mine a plane there are
planes which meet the surface ip:}hft‘:e points. A plane cannot in
gencral meet the surface in miore than three points, for if the
plane « cuts the surface in four points, then through these four
points and one other pdint on the surface there is determined a
three-flat meeting Qgﬁ»fn’ﬁlce in five points.

An arbitrary }ine“does not in general meet the surface, but
there are lines/which meet the surface in two points. No line can
meet the s;Q’fa\ce in more than two points.

Ex, %‘I}n‘v that there are no straight lines lying on the surface.

1?:‘!}41_. There are special planes, however, which meet the
. Sitff'a;:e in a curve, and since a line cannot cut the surface in more
\\tfian two points these curves are conics. These conics are re-
presented by straight lines in the (Ajsv)-plane; for a straight line
in this plane is represented by a linear homogeneous equation in
A, 4, v. Substituting for v in terms of Aand u in the parametric
equations we express the coordinates.as quadratic’ functions of
the single parameter A/; the locus 1s therefore a conic. The
surface therefore possesses oo? conics, correspanding to the lines

of the (Auy)-plane, and it contains no other plane curves.

SAG : 26.
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 Ex. Show that the equations of the plane of the conic corre-
sponding to aA+bp +ev=0 are expressed by equating to zero the
determinants of the fourth order in the matrix :

atx, bix, clxy bexgy  caXg abxg |

I 1 o o o] —2
o} 1 o —1I 1 —1I
8] I I -2 Q G

17-942. An arbitrary four-flat cuts the surface in a quarti®
curve, but if the four-flat contains a given conic of the surfaceitiie
rest of the intersection is another conic. The four-flat | ()

Efrxv.:O .‘.'( ."Z
. . (O
cuts the surface in points whose parametcrs A, p,“v}\arc connected
. by the equation '

)
E X4 Eop+EV T 2fspv+ 255}({%\2552‘#: o.

The curve of intersection breaks up(into two conics if the left-
hand side of this equation factorisg:é:, and the condition for this is
& fr.éf’gs I:O-
"'é-fa % L |
PN

Hence the four-ﬁ:;ts\ which cut the surface in pairs of conics
envelop a varigtyof class 3. 'The point-equation of this variety 18
easily obta}i\xfeﬁ;’ for denoting the determinant by A the co-
4 uit -
. o~ . 8A .
ordlnatgg)ef are proportional to 5 For x,, X, &, these are the
. . ) i .

cofagtors of &,, &, £;, and for x,, 5, %5 they arc double the co-

. factors of &, &5, §a- But the determinant formed from the €o-

\factors=A?=o0, hence :

zx, X X5 =0

xXg 2%, Xy :

xs Xy 2% |
The varicty is therefore of order 3. Asa locus it may be denoted‘
by M,* and as an envelope by ©,3; the surface of Veronese itself
is denoted by 7,2 :

N
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17-943, Two conics aA+bu+er=0, dA+Hp+cv=0 inter-

sect in one point whose parameters are’
(b’ —b'c, ca' —c'a, ab'—a'h),
and this is the only point common to their planes. Through any
point of V,* there pass co conics. A four-flat which contains two
conics touches V,* at their common point. The tangents to the
two conics at this point then determine a plane, the tangent-
plane to V,* at this point. .
o oA

Ex. The equations of the tangent-plane at [A, ., »] are expregsqd\”.
by equating to zero the determinants of the fourth order in‘the
matrix ' N

X, Wy Xy Xy X5 % ,,

.'~\’
A o o o v p ”‘\

o p o v o A

o 0o v g A 0 fO

‘Three equations determining the tangent plane are therefore
V22, + (120 — pudy =0,
Mx+ oS v)tx5 =0,

N

It A%y A =0,
- 17-044. If the four-fat{$) meets V,* in two coincident conics
R <ﬂX+ﬂp+WV=o,
51:E._,_:&g:‘&:.fb:§3=u2:f)2:w3:vw:wu:uw.

‘These four-fiats-form a two-dimensional assemblage @,* of
class 4, the#&xact reciprocal of V" The four—’ﬂats of this as-
semblage ‘which pass through an arbitrary point forfn a one-
dimengional quartic assemblage (reciprocal of a quartic curfel,
which reduces to two quadric cones when the point ll_es on M &
“ahi to two coincident quadric cones when the point pes on V%
ncident conics touches

X four-flat which meets ¥,* in two c?i hes
17,4 at all points of this conic. M,® contains not only all the points

of Vg but also all its tangent-planes. The tangent four-flat to
MM,3 at the point (y) is

(4YaYs— )%t o +(J’5y6"2y13’4)x4+"".=°!
and if (y) is a point on V»* this becomes indeterminate. Hence

¥, is a double-surface on M2, .
2b-2
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17-95. Normal varieties.

A curve of order 7 always lies in a space of 7 dimensions or
fewer, for the r-flat determined by #-+1 points on the curve
would meet the curve in more than  points and must therefore
contain the curve. A curve of order r which cannot be contained
in a space of fewer than 7 dimensions is called a normal curze.
Examples are: straight line, conic, space cubic, etc. )

Similarly a surface of order v, Vy, always lies in a space of £
7+1 dimensions or fewer, for if it be supposed to lic inan
S,(n>r+1), the r-flat determined by 7+1 arbitrary poim\t’s‘nﬁ
the surface would meet the surface in more than ¥ points:

More generally, 2 varicty of p dimensions and of ofdet 7, V5,
is always contained in aflat space ofr+p—1 dimengiéns or fewer;
for if it lies in S, but not in S, an arbitrary Sy, cuts itin ¥
points. But the S,_, may be determined bisg—p+1 points on
the variety, hence #—p+ 1 <7, Le. 75 rEp—1.

A V¥, which cannot be containcd™n’a space of fewer than
7+ p—1 dimensions is called a ;J{o;:?gzdl variety.

17-951. A normal variety l{;":i}z' S, ., s rational. l'o prove
this we observe thata V' in. ;3?;+;,_1 is cut by an arbitrary (7 = 1)-
flat in 7 points. Also the((x—1)-flat is determined by # points.
If r— 1 of these point;i'fi% fixed points on ¥,7 and the remaining
point is on a ﬁxcd\p\ﬂat we have a (1, 1) correspondence be-

" tween this varialile point and the rth point in which the (r—1)-
flat cuts thedvariety. That is, the points of the variety are in
(1, 1) cupr\é%a’bndence with the points of a given p-flat.

17-?}2." " A normal variety has no double-points, for an (r—1)-

latypassing through a double-point and r—1 other points of the
. Yaricty would meet the variety in more than # points.
\\ ) The surface of Veronese is a normal surface in Ss.

17-96. Projections of the surface of Veronese on space of
three dimensions.

A figure in space of five dimensions may be projected from 2
point on to a four-flat by lines passing through the point. It may
be projected on to a three-flat from a line by planes passing
through the line. There are different cases according as the line
does not meet the surface or meets it in one or in two points.
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(1) Projection on to a three-flat = from a line a not meeting the
surface. If Pis any point on the surface the plane Pa does not in
general meet the surface again and cuts « in a point P'. An
arbitrary three-flat through @ cuts the surface in four points and
» in a line. Hence the projection is a surface of order 4. A four-
flat through « and a conic-plane of the surface gives a conic in
the projection. Hence the projection is 2 quartic surface having
0t conics. Let the line a be the join of the points

Alo, 1, =1, 0, 0, 0] and B[1,0, —1I,0,0,0], A
and let the three-flat « be #; =0 =1x,. Taking any point P\ gne]”
on the surface, freedom-equaticns of the plane ABP with pata-
meters # and » are N 3

2¥7?

px1=w+)@, px4= 2y .‘.‘:\\
pxy =1+ p, pxs= 21;\}1,’

pay= —u— UV, Py < 2N
Hence freedom-equations of the projection are
ity = X2+ p2 4V pXg= 2 Npx; = 202, pre= 2ty

and these represent a Steiner sutface.

(2) If the line o meets thésurface in one potnt A an :trbit.rsu'}r
three-flat through @ meéts.the surface in just three other pomtj.q,
hence the projectig%r\‘xf;.ﬁ cubic surface. The tangfant-pla?le at
cuts o« in a poinbd’. hrough A there are 00 conics on the sur-

face. The threeflat determined by 2 and the plane of one of
AS

these conicd.Cuts « in a straight line. Hence the projection is 2

ruled cubie’surface. _ _ . .
(3X ‘the line a meets th_e-surfa:ce in two potnts A, B, the ]]:;11;2;
“jechion is 2 quadric surface, and its two sets of gelr:.(i;atmdgthose
\'“\ﬁr\é the projections of the conics which pass through /2 an
‘which rough B.
i h';'cli Eis:di‘}i]f ::Ilige culed cubi¢, and the Steiner surface {lalltFro-
jections of the surface of Veronese) are the only surfaces 1n three

: ] . g
dimensions which possess 00* cOnIcs:

17.97. Quartic surfaces having addog?l?l?ei. wery plone
i 5 s a double-lin ;
If a quartic surface possesse ou Lo
nd so there
through this line cuts the surface again in @ cONIC,
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is a single infinity of conics lying on the surface. If the double-
line 7is x=0=7y the equation of the quartic surface is of the
form 2

Py?+ 2Q0xy+ Ry* =0,
where P, O, R are expressions of the second degree. A plane
through the double-line, y = tx, cuts the surface where £*=0 and
again in a conic, the intersection of / with

P20t +R?=o0,

where P, Q', R’ are quadratics in &, z, @ obtained from P, @, R
by substituting y=1#». In this equation the coeflicients af a2,
2%, w?, 2w, wx, x¥ contain ? to the powers 4, 2, 2, 2, 373 re-
spectively, hence its determinant is of degree 8 ip, A, There are
therefore eight planes through { which cut the. &utface in pairs
of lines, and hence in addition to  there are 16.3mces on the sur-
face, all of which cut . There are in gener‘a@b other lines on the
surface. . S

Now an algebraic surface has a certain number of tritangent-
planes. Any one of these meets the\surface in a curve having the
three points of contact as dpaﬂjie-pqints, and there is in the
present case a fourth double=point at its intersection with /. This
quartic curve therefore reduces to either two conics or a nodal
cubic with a straight Jide} in the former case one of the points of
intersection of theltwd conics les on [, and in the latter case one
of the points of intersection of the line with the cubic lies on L

Now let  b&any plane and P any point on it, and let € bea
conic in aritangent-plane. The plane P/ cuts C in two points,
one of Which is its intersection with 1. There is therefore just one
varigble point Q and the line PQ cuts the surface in one other
peint P’ which is associated with P. Conversely P’ determines
P uniquely. Hence there is (with certain exceptions) a {1, 1)
"correspondence between the points P’ of the quartic surface and
the points P of the plane, The surface is therefore rational.

17-98. Quartic surfaces having a double-conic.

If a quartic surface possesses a double-conic C) 2 tri-
tangent-plane cuts the surface in a quartic curve having five
double-points and thercfore breaking up into a conic and two
straight lines. Two of the five double-points, 4 and B, are the
intersections of the plane with C, and since neither of the lines
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can lie in the plane of C the two lines must pass one each through
Aand B. Letbe the line through 4. Take any plane w and any
point P on it. The plane P/ cuts C in two points, one of which is
A let Q be the other point. The line PQ cuts the surface in two
points at (, one point on /, and one remaining point P'. Con-
versely, P’ determines a plane with /; this plane cuts C'in A and
another point Q, and P'Q cuts m in P. Hence there is a (I, 1)
correspondence between the points P’ of the surface and the |
points P of the plane =. The surface is therefore rational. -

N ¢
. : . o\
Fx. 1. Show that the anchor-ring A0
(gt (R B9) gt (0 4)
- has the circle at infinity as a double-conic. D ’

Ex. 2. Show that the anchor-ring contains the four lines
x_-l_-z'j::o:zicw, SO
where 2 =h*—a* : A

Ex. 3. Show that the cquation of the tz{r%hor-ring can be reduced

to the form . y W
° (XY+ZW)2—§XZY(Z—W)2=O

N

by the transformation O
% biy =X, ztow=2Z,
‘o i
ek ifx} =¥, x-c .
where ¢ =b2 —g* dnd k=a%/c
Ex. 4. Shqwith‘at the surface
O (xyrzwp kXY (Z-W}=0

has f§§§om-equ ations Xk "
Q\ Y= (atv)
O ' pZ =kt (1)

pW: ,)(‘.'.w (k.u.-?)

Ex. 5. Show that freedom-equations of the anchor-ring aré

pu=2c2t (W= 1)

py=ct (F-1) (@~ 1),

pz =2beu (F+1)

pwo=(@+1) {a (@~1) +5 (2 + 1)

[If a> b write c=ic’ and u=14"]
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17:981. The general equation of a quartic surface having a
double-conic )

w=o0, Fy=ax®+by*+cx*+2fys+2gax+2hey=0

is : F242wF, G +uw*Gy=0,
where G, and G, are homogeneous expressions in x, ¥, &, @ of
degrec one and two respectively. [G, indeed need not contain w.]
An arbitrary plane section is a quartic curve with two double-
points.

In the special metrical case where the conic is the cirgléat
infinity, so that the equation in rectangular cartesfagh Co-
ordinates is A\

(2292 + 272 4 2wGh (& + 3%+ 27) + e GIA0,
=0 being the plane at infinity, the surface i¥ “égllcd a Cyclide,
and an arbitrary plane sectjon is a quartic haying double-points
at the circular points in its plane, ie. K’[}?cﬁ'cular quartic.

17-982. A binodal plane quartic gurve is the projection of the
quartic curve of intersection of tywo-quadrics. A quartic surface
which possesses a double-conig has an analogous property of
being the projection of the’sii’ff'ace of intersection of two quadric
loci in space of four dimpensions.

Let Q=0 and R=p{epresent two quadric lociin Sy, © and R
being homogeneoxké\qiladratic expressions in Xo, ®1, %, ¥ ¥
Then QO+ AR=drepresents a linear system of quadric loci alt
containing thie’quartic surface ¥;! common to Qand R If this
is projectedrom any point O on to a three-flat S, we obtain a
quartid giurface ¥ in S;. Through O there passes one quadric,
say. 0, of the system, and the tangent three-flat at O meets ¢in
.a(fcbne with vertex O which is cut by Sy in a conic € and this

\‘eonic lies on F. But every generating line of the cone meets the
other quadrics of the system, and therefore V.4, in two points,
and each such pair of points is projected into one point. Hence
C is the locus of double-points or a double-conic on F. '

17-99. EXAMPLES.

1. Show that the constant-number of a rational algebraic
curve of order # in a plane 1s 32— 1.

[The parametric equations contain 3(n+ 1) cocfficients; but
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by the fundamental theorem of projective geometry to any three
points may be assigned arbitrary values of the parameter, and,
further, only the ratios of the coefficients are significant, so that
the number of essential constants is reduced by four. Othes-
wise: the constant-number of the general plane curve of order
7 is Jn(n-+3), and the rational curve has }(n— 1)(n—2) double-
points; subtracting these we get 3n—1I.] '

2. Show that the constant-number of a rational curve of order \
n in space is 47. O\

3. Show that on an algebraic surface of order there dte’in
general cotr—tratl pational algebraic curves of order"r;’fn par-
ticular oo%—1 rational #-ics on a quadric surface aJ{d'\bof-l ona
cubic surface. '

Deduce also that on a general surface of qtge:r 4 or more there

$

are no rational curves of any order. L6
Find the number of conditiofis,in order that a surface
should possess {i) a conical poiqt;.’(ji)"a triple point.
Ans. () 1, () 7-

. Show that nine copditions are required in order that a
] a double-line, and find the num-

5 ¢
quartic surface should possess
her of conditions (Q'\%he case of a surface of order n.
Ans. 3n—3.0)
6. Show:t‘ﬁ\af the constant-
surface, i8{1'3.
';_{.(%ﬁow that the constant-
~ A :
\* 8, Show thata cubic surface may hav
but cannot have more; also that if it has
cone from any point _Of the surface consis

number of the general ruled cubic
qumber of the Steiner surface

¢ as many as four nodes
four nodes the tangent-
ts of two quadric cones.
(Math. Trip. 11, 1914.)

g. Show that upon 2 cubic surface there are tw;)l.famllu;st }(1);
skew cubic curves associated with any double-six of lines 0
which pass through these

\ dric surfaces
surface, and that the 42 f them, Prove also that

curves are all linear functions of niné ©
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the first polar of any point in regard to the cubic surface is a
linear functien of these nine quadrics. '
Find the general form of these cubic curves, and of these
quadric surfaces, so far as they exist, for the surface
x4y 24t nt=o.
(Math. Trip. 11, 1974.)

0. Of five non-intersecting lincs in space the five pairs of (N
transversals of each set of four of these lines arc construcged.
Prove that the five transversals of these pairs which :c{'n\“[ae
drawn from an arbitrary point of space are coplanar. \

(Math. Tripi 5 1915.)

11. Prove that a ruled surface of order # hasun gencral a
double-curve cutting each generator in n—2 Po{flts.

Show that the normals of an ellipsoid gtjt:he points of a given
plane section are chords of a twisted cubiticurve, and generators
of a ruled surface of order 4. Prove)that if the plane of the
scction touch a certain surface ‘Q’f:’:l‘.hf: fourth class, the cubic
curve is replaced by a straight line ; and investigate the character
of this line upon the ruled si';j‘fefce. (Math. 'Trip. 11, 1914.)
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32 from
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Mooyl i

n difnensions, 62, 340, 400, 408
~ &t of rationality, 6o
Node, 373 :

\ Non-euciidean geometry, 65, 136,
259, 335 .

Normal varieties, 404

Normals to quadric, 123, 137, 140,
162

Nuill-system, 136: connected with
space-cubic, 293

Oblate spheroid, 110
Order of algebraic curve, 139, 277,
286 surface, 215, 364

INDEX

‘Orientation of plane, 13; =line at
infinity, 17

Origin, 1~ .

Orthocentric tetrahedron, 43, 9z
pentad, 43, 02 :

Orthocyclic quadrice, 323

Orthofocal quadric, 325

Orthogonal cone, 103; hyperboloid,
128, 323 :

— spheres, 78

— transformation, 321

Orthoptic sphere, 128

Oscular line, 306 KoY

Osculating plane, 284 ; of cubjceurve,
28¢, 293 T W\

Osculation, point of, 366,

Qutpolar conics, 1ady Huadrics,
311 'w;\'\ /

Painvin’s comhlegy361

Parabolic cy{nder, 106, 173; linear
congruefigg,” 347; point, 148,
365 } . .

Parabbloid, 173; clliptic, 114; circu-
14t Sections, 205 ; hyperbolic, 114

o \generators, 183 ; models, 117, 200,

N

O\ 248
a0 WParallelism, 5

™
3

Parametric equations of curve, 158,
278; surface, 191 ff.; anchor-ring,
407; cardioid, 282 ; conic, 189, 160;
cubic curve, 180, 28g, 293, 300;
cubic surface, 391 ; ellipsoid, 103;
eltiptic quartic curve, 26%; hyper-
bolic paraboloid, 138 ; hyperboloid
of one sheet, 188 ; nedal or cuspidal
quartic curve, 2997 plane, 12, 20,
62 quartic curve of second apecies,
302 ; straight line, 11, 18, 01, 280
ruled cubic, 194; Steiner surfuce,
154, 398 curve of striction, 305;
surface of Veronese, 4o1; sscond
degree, 104, 400

Pencil of planes, 22; quadric loci,
2513 quadric envelopes, 2353:
spheres, 81

—. plane, 46, 346

Perpendicularity, 5

Perspective, 53

Pinch-peints, 183

Plane, 12; lying on V4% 343

— section of quadric, 145, 199 L.}
algebraic surface, 364

Plicker’s coordinates, 28, 357, equa-

- tions, 287



INDEX

Point, double (see Double-peints);
elliptic, parabolic and hyperbolic,
148, 363 of osculation, 366

Point-sphere, 74

Polar congruence, 354

— Jines w.r.t. quadric, 129, 149, 220;
w.r.t. linear complex, 239, 350

— of line w.r.t. guadratic complex,
354

~— planc w.r.t, algebralc sutrface, 360
cone, Ioo; quadrie, 124, I47;
sphere, 7o; tetrahedron, 63

— quadrie, 366 threc-ﬁdt 341

— tetrahedra, 129

Polarising operator, 330, 300

Polarity, 154

Pole of given plane, 125

Porisms, 102, 143, 140, 310, 312, 316

I’osmon ratic, 6

Power w.r.t. spherc 73

Prime, 62

Principal diametral planes 1306, 166;
directions on a quadric, 138; foc;,
2307 tangents, 3635

Prohessian, 372

Projection of lines of curvature, 256;
of surface of intersection of quad-

" ric varieties, 408; of surface of
Veronese, 404

- stbrcogmphxc, 85, 192, 342

~

Pro_;ectne coordinates, 6o; geomefTh,

46; invariants, 152, 309; 1'511833«; 54
Prolate spheroid, 110 ¢. &\
Ftolemy’s theorem, 77 \\
Quadratic complex, 353
Quadratic repreaentmg pairs of ele—

ments; 50, 79,

Quadric vzmetv.\z .341

Quadrics, x\‘\, determined by three
yeneratgrs, 145 ; generated by re-
lated.pcrlmls of planes, 183; by

TGRSV ersals of three skew lines,

»18¢; through nine points, 144;
tBrough a cubic cury e, z8g; of

tevolution, 173
Quadriplanar coordinates, 68
Quartic curve, 267, 295 ff.; cuspidal,

271, 299; elliptic, 208; nodal, 26g,

208
— surfaces, 357 fi.; developable,

385 ; rational, 3¢7; ruled, 385 ; with

double-conic, 406; with double-

line, 405 ; with twelve conic nodes,

376

' Representatmn

78
Radius-vector, 2, 7
Rank of matrix,

287 surface, 38¢
Rational algebraic curve, 188, 277;

plane curve, 282 surface, 191, 381;

quartic surfaces, 307
Rationality, net of, 6o
Ray-coordinates, 337
Reciprocal cones, 1oo; elements, 47;

quadrics, 328 ; surfaces, 373
— of a cone, 1oz, 216; cylinder, 107

20} space-curve,

415
Radical axis, 78: centre, 78; plane,

/

Rectangular cone, 102; comdmatcs, .

23 generators of cone, 102; hyper
bolic cylinder,
paraboloid, 323; hyperbolmd 127,
266, g2z; in non—euckldean geo-
metry, 335 .
Reducible curve, 28gysutface, 164
‘Regulus, 116; linsahseries, 347
\%ﬁframctric {see Para«

metric) € &

— of surtdcs on plane, 91

Residudl;\z80

Revglutitn, surface of, 110 quadries,

&3
Riaamoro, . W., 397

\Right-handed system, 2
3 Ring-contact, 18e, 234, 268

Roman surface, 368
Ruled surfaces, rig, 285, 3791l
cubics, 194, 382 f.; quartics, 385

. SaLsown, G., 260

Scalar product of vectors, 1§

Scyriror, L., 393

Scundrer, H., 323

Sections of quadric, 199

Segre characteristics, 273

Self-conjugate liriear complex, 351;
tetrahedra, 130

Self-polar tetrahedron, rz2g; of two
quadrics, 252

Sheaf of planes, 23

Signs of scgments, 2

Simplex, 62, 349

Simultaneous invariants, 310

Singular linear eomplex, 347; linear
congruence, 347, 34¢; line, 333;
points and planes of quadratic
complex, 354 ; surface of quadratic
complex, 354, 358; system of
quadrics, 273

Singularities of a surface, 373

106 h)(perbolic .



© — plane of surface, 212, 364 qua‘d:”’
Tie, 123, 147; sphere, %0 ™
— three-flat, 341 N

416

Skew invelution, 162 o

— lines, 23; shortest distance, 32

S, =space of dimensions, 340

Special [inear complex, 185, 34~

Sphere, 74 .

Sphero-conic, 259

Sphéroid, 110

Stationary plane, 366 )

Steiner surface, 194, 370, 398 ff,

Steinerian, 371 <

Stereographic projection, - 85, 192,
342

Straight line, 11 (see Lines)

Striction, line of, 304 .

Superabundant coordinates, 2, 28

Surfaces, algebraic, 364 . ruled,
T14, 285, 3%g ff.; with =t conics,

. 378

Sylvester’s law of inertia, 353

Symmetry, 121

Tact-invarianr, 317

']‘angcnt-cone, 27

— lines of space-cutve, 284; cubic
curve, 29z

— linear congruence, 353

‘Tangential equations, 212 fi\thne,
98, 217 ; cylinder, 106 ; plane curve,

" 210; space-curve, 2 4\ Quadric,
124, 214, 328; , Surface, 213,
375 .\ o i

Tangents, conjugate 366 ; inflexional
or principal, 465

Tetrahedra, uilially inscribed, w1,
2, 306; pOla¥, r2g

Tetrahedfé{i:bmplex, 263, 360

Tetrahedfold, 261

Transfonnation, afline,-

INDEX

Tetrahedron, orthoceniric, 43; of
reference, 62; self-conjugate, I30;
self-polar, 120; of two quadrics,
252; volume, 34

Three-flat, 341

Taore (see Anchor-ring)

Torsal line, 396 i

322; bi-
rational, 86; conformal, 86; of
coordinates, 3, 37, 48; inverge, 37;
linear, 47, 130, 321; orthighonal,
321; quadratic, 86; spherical) 86

Triangle aof reference, 612\ N

T Triple orthogonal systeth, V235
T N/

Triple points, 378 o

Trisecants, 283, 2§8~,.’:3.g7, 352

Tritangent plapesh 377 of cubic
surface, 3912/

Trope; 3760\

UmbilicsZ\dor, 256
Unicgn*sg “curve, 281
LUnigldnar node, 374
Niili-point, 48

(Ogtde, 374

Vector-product, 15

Vectors, 14 :

Veronese, surface of, 400

Vertex of paraboloid, 140, 194

Virtual conie, 160; quadric, 121, 1013
sphere, 74 .

V,ﬁ:quadric_variety in 8,1, 341,

© 343

Volume of tetrahedron, 34

Valume-coordinares, 6g

Wave-surface, 361
Weddic surface, 307
Weight of invariant, 152
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